
Unveiling the Milky Ways Formation History:
Resolving Chemo-Dynamical Substructures in APOGEE and GALAH

Jacob Tutt1

1Department of Physics, University of Cambridge, UK

MPhil Data Intensive Science - Data Analysis Project 16 July 2025



Galactic Archaeology’s Motivation

Credit: ESO/L. Calçada

▶ Uncovering hierarchical galaxy
formation.

▶ Complements higher redshift galaxy
formation surveys.

▶ Probe the ΛCDM model and dark
matter distribution.

Merger Type Number Mass Ratio

Minor Mergers ∼30 1:3 – 1:100
Major Mergers ∼3 >1:3

N-Body Simulations from Fakhouri et al. (2010)



The Era of ‘Big Data Astronomy’

Credit: ESA/Gaia/DPAC, A. Moitinho.

Survey Gaia EDR3 APOGEE GALAH
Focus Astrometry, Photometry IR spectroscopy Optical spectroscopy
Sources ∼ 1.4 × 109 ∼ 734,000 ∼ 918,000



The Evolving Picture

Credit: V. Belokurov et al

(2018)

Credit: A. Deason (2018)

The GS/E Merger

▶ Singular massive (≈ 1010M⊙)
accretion event ≈ (8-10 Gyrs)

▶ Radial anisotropy in stellar
halo’s higher metallicities
(−1.7 ≤ [Fe/H] ≤ −1)

▶ Independent α and Al
abundance trends

▶ Contributes ≈ 50% of the stellar
halo



The Evolving Picture

Splash

▶ Proto-disk
population
(pre-GS/E)

▶ Gravitational
perturbations of
orbits

Credit: V. Belokurov et al. (2020)

Eos

▶ GS/E triggered star
formation

▶ Gas from thick disk
and GS/E polluted
gas

▶ Evolves into outer
thin disk

Credit: R. Grand et al. (2020)

Aurora

▶ Near isotropic
velocity distribution

▶ Ancient pre-disk/
spin-up population

▶ Rapid star
formation/
self-enrichment

Credit: Belokurov et al. (2022)



Unbiased Detection of Halo Substructures

Goal:

▶ Unbiased Decomposition of the Milky Way’s Halo’s (stellar
neighbourhood) Substructures.

▶ Approach:
▶ Ensure the reproducibility of Myeong et al.(2022).
▶ Apply dimensionality reduction to provide insights into clustering

stability.
▶ Alternative clustering approaches to improve the convergence

and computational efficiency.



Integral of Motion Space

Traditional 6D Phase Space:

Integrals of Motion:

▶ Adiabatic invariant

▶ ≈ constant over evolution

For axisymmetric potentials:
Symbol Description
E Orbital energy
Lz Angular momentum

(along z-axis)
L Angular momentum

(Total, quasi-conserved)

(a) Initial distribution of simulated merger events

(b) Distribution after 12 Gyr (with observational errors)

Credit: Helmi et al. (2000)



Biases of Halo Selection

Dynamical Cuts:

▶ Eccentricity, e > 0.85
▶ Apocenter, > 5kpc
▶ Energy, < 0km2s−2



Chemical Tagging

Credit: Kobayashi et al. (2020)

Insights from Chemical
Abundances

▶ Probe star formation
enviroment (ISM)

▶ Trace nucleosynthetic
sources (e.g. SNe, AGB)

▶ Reflect rates of:

▶ Star formation
▶ Self-enrichment

▶ Link to host galaxy mass
(IMF)



Data Acquisition

APOGEE
▶ Sample Size: 1612
▶ Dimensions: Energy, [Fe/H], [α/Fe],

[Al/Fe], [Ce/Fe], [Mg/Mn]

GALAH
▶ Sample Size: 1061
▶ Dimensions: Energy, [Fe/H], [α/Fe],

[Na/Fe], [Al/Fe], [Mn/Fe], [Y/Fe], [Ba/Fe],
[Eu/Fe], [Mg/Cu], [Mg/Mn], [Ba/Eu]

Group Elements Traces
Iron-peak Fe, Mn, Ni Overall Metallicity - Type Ia and II SNe
α-elements Mg, Si, Ca, Ti Core-collapse (Type II) SNe
Odd-Z elements Na, Al Similar Core-collapse (Type II) SNe
s-process Y, Ba, Ce Slow neutron capture - AGB stars
r-process Eu Neutron star mergers/ Rare CC-SNe



Dataset Comparison



Extreme Deconvolution

The latent distribution of true values v is modeled as a mixture of K Gaussians:

p(v) =
K∑

j=1

αj N (v |mj ,Vj), (1)

Likelihoods of noisy observations wi are computed by marginalising
over v:

p(wi |θ) =
∑

j

∫
dv p(wi |v) p(v|j , θ) p(j |θ). (2)

Where:

p(wi |v) = N (wi |v,Si), (3)

p(v|j , θ) = N (v|mj ,Vj), (4)

p(j |θ) = αj . (5)

Credit: Bovy et al (2011)

▶ wi : observed (noisy) data point

▶ v: latent true value

▶ Si : noise covariance of wi

▶ αj : mixture weight for component j

▶ mj : mean of Gaussian component j

▶ Vj : covariance of component j



Extreme Deconvolution

As a result, the total likelihood of wi simplifies to another mixture of
Gaussians:

p(wi |θ) =
∑

j

αj N (wi |mj ,Tij), (6)

where the effective covariance Tij accounts for both the Gaussian
component and the measurement uncertainty:

Tij = Vj + Si . (7)

The log-likelihood across all N data points becomes:

ϕ =
∑

i

lnp(wi |θ) =
∑

i

ln
K∑

j=1

αj N (wi |mj ,Tij). (8)

Credit: Bovy et al (2011)



Extreme Deconvolution Pipeline

1. Unbiased component optimisation (AIC/BIC):

AIC = 2k − 2 lnL, BIC = k lnn − 2 lnL
where:

▶ k : number of free parameters
▶ n: number of data points
▶ L: maximum likelihood

2. Scaling schemes:

2.1 Rescale energy by 105 to match other dimensions
2.2 Standard normal scaling applied to all features

3. Added functionality to XD:
▶ Automatic probabilistic assignment
▶ Automated model selection and initialisation convergence via

AIC/BIC



Extreme Deconvolution Pipeline

Motivation of Scaling Scheme

Unscaled XD Clustering Results in [Fe/H] -

[α/Fe] Plane

Unscaled XD Clustering

Quantitative Model Comparison



Extreme Deconvolution - APOGEE

▶ Subtle BIC Discrepancy with original work (favouring 5 over 7)
▶ ‘Loss’ of Aurora (Red) Detection in 5 Component Model
▶ Trivial differences between GS/E (Green/Orange) split



Extreme Deconvolution - GALAH

▶ AIC providing correct isolation of 5 gaussian components
▶ ‘Exact’ agreement with original work



Key Scientific Recoveries: GS/E Merger

APOGEE

GALAH

Singular Accreted Component

▶ Early α knee turnoff
▶ Low [Al/Fe] turning point
▶ Trends resembles low

mass/ SFR progenitor
▶ Fractional weighting 51%

→ consistent with
V. Belokurov et al

2018

▶ GALAH’s high metallicity
limit → smaller weighting
and lack of plateau split



Key Scientific Recoveries: Splash

APOGEE

GALAH

Splash

▶ Dominant metal rich
component ([Fe/H] ≈ -0.7)

▶ Thick disk like chemistry
▶ ‘Splashed’ out proto-disk

from GS/E



Key Scientific Recoveries: Aurora

APOGEE

GALAH

Aurora

▶ Highly correlated planes:
[α/Fe]-[Fe/H] and
[Al/Fe]-[Fe/H]

▶ Ancient rapidly enriching
population - early life in a
large mass system

▶ Early pre-disk MW
population



Key Scientific Recoveries: Eos

APOGEE

GALAH

Eos

▶ Chemically residing
between the GS/E
population and thin disk

▶ Born in gas polluted by
GS/E merger and thick
disk

▶ Evolves into the thin outer
disk



Dimensionality Reduction

Goals:

▶ Investigate the cohesion and isolation of the substructures
identified during high-dimensional clustering

▶ Understand sensitivity of Aurora’s detection.

UMAP:
▶ Non-Linear dimensionality reduction
▶ Advantages over T-SNE:

▶ Increased speed
▶ Better preservation of global structure

▶ Hyperparameters:
▶ n neighbours: Balance of the local and global structure
▶ min dist: Controls lower dimensional projection
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UMAP - 6D APOGEE

a) Colors based on High Dimensional XD

b) Colors based on GMM recovery

Key Results:

▶ Proof of concept
▶ A split in Aurora?
▶ GMM used to demonstrate

cohesion and isolation
▶ Caveated:

▶ Non-Linear Reduction: GMM has
no probabilistic foundation.



UMAP - 12D GALAH

a) Colors based on High Dimensional XD

b) Colors based on GMM recovery

Key Results:

▶ Near ‘perfect’ GMM recovery
▶ Greater Cohesion and Isolation:

▶ 12D → Nucleosythetic
discrimination

▶ Is this the only reason ?



UMAP - 6D GALAH

a) Colors based on High Dimensional XD

b) Colors based on GMM recovery

Key Results:

▶ Still Greater Cohesion and Isolation
▶ Attributed to:

▶ Exclusion of low metalicity
▶ Region of ‘confusion’ with GS/E



Scalable Methodologies

A Low-Dimensional Pipeline:

1. Dimensionality Reduction
2. Clustering in Embedding Space
3. Re-projection back into Original Space

Caveat:
▶ Lack uncertainties in embedding space → Traditional GMM
▶ Approximate De-convolution of Variances:

Σintr = Σobs − ⟨∆⟩ (9)



4 Component Re-identification

▶ 4.7 hours → 7 seconds (2500 × Speed-Up)
▶ Entirely Consistent Results
▶ 29.3% Increase in Uncertainties



6 Component Re-identification

▶ A rough recovery of the GS/E Split
▶ Not achievable in high dimensional clustering



6 Component Re-identification

▶ A potential split in splash?
▶ A simple division of a large components in embedding space
▶ Or ... an astrophysical distinction



Key Results

1. Recovered key populations: Confirming objectivity and
reproducibility.

2. GALAH’s higher dimensionality: Provides greater halo
substructure separation despite higher uncertainties.

3. Clustering in Embedding space:
▶ Near-identical results to high-dimensional analysis
▶ Achieved in 0.04% of the time ( 29% higher uncertainty)
▶ A future stable and scalable alternative



Future Work

1. Aurora’s Split: Test for bimodality in Aurora structure
2. Splash’s Split: Explore physical basis for two Splash

subpopulations (simulations)
3. Hybrid Pipeline:

▶ Fast (low-D) clustering for initial grouping
▶ Uncertainty-aware (high-D) clustering for accuracy



Questions

Thank you for your attention!

Jacob Tutt
Department of Physics, University of Cambridge

jlt67@cam.ac.uk

https://github.com/jacobtutt

https://github.com/jacobtutt


APOGEE Results



GALAH Results



Extreme Deconvolution

Expectation-step

qij =
αj N (wi | mj ,Tij )∑
k αk N (wi | mk ,Tik )

(10)

bij = mj + Vj T
−1
ij (wi − mj ) (11)

Bij = Vj − Vj T
−1
ij Vj (12)

Maximisation-step

αj =
1
N

∑
i

qij (13)

mj =
1
qj

∑
i

qij bij (14)

Vj =
1
qj

∑
i

qij

[
(mj − bij )(mj − bij )

⊤ + Bij

]
(15)



Model Comparison

Akaike Information Criterion
▶ Favors models with best

predictive accuracy

Bayesian Information Criterion
▶ Favors models with best

overall fit

AIC = 2k − 2 lnL,
BIC = k lnn − 2 lnL,

where:
▶ k : number of free parameters,
▶ n: number of data points,
▶ L: maximum likelihood of the model.



UMAP Algorithm:

1. Compute local distances
▶ For each point, find distance to the n-th nearest neighbor

(n neighbours)
2. Construct Representation

▶ Build a weighted graph representing connection probabilities
▶ Done using local radii (scaled by nth nearest neighbor)
▶ Ensures mutual relationships are captured

3. Optimise low-dimensional embedding
▶ Initialise points in low-dimensional space (min dist)



UMAP Visualisation



Splash Decomposition

Feature Splash 1 Splash 2 Tracer
Colour Magenta Purple
Fraction 16.1% 17.0%
[Eu/Fe] Lower Higher r-process
[Al/Fe] Lower Higher Core-collapse SN
[Ba/Fe] Higher Lower s-process (AGB)

Table: Comparison of chemical properties between Splash 1 and Splash 2
populations.
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