
S1 Coursework Assignment - Report

Jacob Tutt (JLT67)

Department of Physics, University of Cambridge

December 18, 2024

Word Count: 2996

1 Introduction

The motivation of this report is to compare the statistical power and performance of two common
methods for fitting distributions in experimental data analysis. It contrasts a multidimensional
Extended Maximum Likelihood Estimate (MLE) with an ‘sWeighted’ fit, which isolated the Signal
distribution in the control variable using fits from the independent variable [2].

1.1 True 2-Dimensional Model

This paper examines a two dimensional truncated statistical model, X ∈ [0, 5] and Y ∈ [0, 10], in
which the signal s(X,Y ) and background b(X,Y ) models are independent across X and Y :

f(X,Y ) = fs(X,Y ) + (1− f)b(X,Y )

= fgs(X)hs(Y ) + (1− f)gb(X)hb(Y ). (1)

where:

• f is the signal fraction,

• gs(X), hs(Y ) are the signal distributions,

• gb(X), hb(Y ) are the background distributions.

Signal Distribution:

• X component, gs(X), uses the Crystal Ball function:

p(X;µ, σ, β,m) = N ·

e−Z2/2 for Z > −β,(
m
β

)m
e−β2/2

(
m
β − β − Z

)−m

for Z ≤ −β.
(2)

where Z = X−µ
σ , and N is the normalisation constant. µ, σ, β, and m define the mean,

width, threshold, and tail exponent.

• Y component, hs(Y ), is an exponential decay:

hs(Y ) = λe−λY . (3)

where λ is the decay constant.

Background Distribution:

1



• X component, gb(X), is the uniform distribution:

gb(X) =

{
1

Xmax−Xmin
for Xmin ≤ X ≤ Xmax,

0 otherwise.
(4)

• Y component, hb(Y ), is modeled as a normal distribution:

hb(Y ) =
1√
2πσb

e
− (Y −µb)

2

2σ2
b . (5)

where µb, σb are the mean and width of the distribution.

2 Part a - Normalisation of Crystal Ball Distribution

This provides a derivation of the normalisation constant, N , for the Crystal Ball function, Eq. (2).
The overarching goal is to enforce:∫ ∞

−∞
p(X;µ, σ, β,m) dX = 1 (6)

First, the integral is rewritten with respect to the transformation, Z:

Z =
X − µ

σ
, dZ =

1

σ
dX, dX = σdZ, (7a)∫ ∞

−∞
p(X;µ, σ, β,m) dX = σ

∫ ∞

−∞
p(Z;µ, σ, β,m) dZ. (7b)

Splitting the integral into the two sides:∫ ∞

−∞
p(Z;µ, σ, β,m) dZ = σ

(∫ −β

−∞
p(Z;µ, σ, β,m) dZ +

∫ ∞

−β

p(Z;µ, σ, β,m) dZ

)
. (8a)

The left-hand side of the integral (Z ≤ −β):∫ −β

−∞
p(Z;µ, σ, β,m) dZ =

∫ −β

−∞

(
m

β

)m

e−β2/2

(
m

β
− β − Z

)−m

dZ, (9a)

=

[
1

m− 1

(
m

β

)m

e−β2/2

(
m

β
− β − Z

)−(m−1)
]−β

−∞

, (9b)

=
1

m− 1

(
m

β

)m

e−β2/2

(
m

β

)−(m−1)

, (9c)

=
1

m− 1

(
m

β

)
e−β2/2. (9d)

As
(

m
β − β − Z

)−(m−1)

→ 0 as Z → −∞.

The right-hand side (Gaussian component) (Z > −β):∫ ∞

−β

p(Z;µ, σ, β,m) dZ =

∫ ∞

−β

e−Z2/2dZ =
√
2πΦ(β), (10a)

Where Φ(x) is the CDF of the standard normal distribution:

Φ(x) =
1√
2π

∫ x

−∞
e−t2/2dt. (11)

Recombining the left and right integrals:

1 = σ

(
1

m− 1

(
m

β

)
e−β2/2 +

√
2πΦ(β)

)
. (12a)

Rewriting Eq. (12a), N is given by:

N = σ

(
m

β(m− 1)
e−β2/2 +

√
2πΦ(β)

)−1

. (13a)

2



3 Part b - Defining the Distributions

3.1 Object-Oriented Architecture

The program’s uses an object-oriented structure, shown in Figure 1, to improve the flexibility for
future component distributions by increasing modularity. The majority of analysis is defined within
the classes hence documentation with source code and docstrings is provided for easier insights
into its methods.

Crystal Ball Distribution gs(X)

Exponential Distribution hs(Y )

Uniform Distribution gb(X)

Gaussian Distribution hb(Y )

Signal Distribution s(X,Y )

Background Distribution b(X,Y )

Overall Distribution f(X,Y )

Figure 1: Inheritance structure of the object-oriented architecture

3.2 Applying Truncation

The distributions PDF’s and CDF’s are implemented using scipy’s distributions; truncating and
renormalising them for X ∈ [0, 5] and Y ∈ [0, 10].
Truncated PDF:

ftrunc(x) =

{
f(x)

F (xmax)−F (xmin)
, x ∈ [xmin, xmax],

0, otherwise.
(14)

Truncated CDF:

Ftrunc(x) =


F (x)−F (xmin)

F (xmax)−F (xmin)
, x ∈ [xmin, xmax],

0, x < xmin,

1, x > xmax.

(15)

where:

• f(x): Original PDF

• F (x): Original CDF

• [xmin, xmax]: Range of truncation.

3.3 Initialising Distribution

The model defined in 1.1 is initialised with the following parameters:

µ σ β m f λ µb σb

3.0 0.3 1.0 1.4 0.6 0.3 0.0 2.5

Table 1: True model parameters’ values

Plots of each distribution’s PDFs and CDF’s are shown in below:

3

https://s1-coursework.readthedocs.io/en/latest/index.html


Figure 2: Truncated Crystal Ball Distribution (gs(X))

Figure 3: Truncated Exponential Distribution (hs(Y ))

Figure 4: Uniform Distribution (hb(Y )).

Figure 5: Truncated Normal Distribution(gb(X))

4



Figure 6: Signal Distribution (s(X,Y ))

Figure 7: Background Distribution (b(X,Y ))

Figure 8: Overall Distribution (f(X,Y ))

5



3.4 Verifying Normalisation

The normalisation of the truncated distributions is verified by integrating the PDFs over their
truncated ranges and all real space using scipy’s numerical integration functions quad for 1D and
dblquad for 2D distributions. Ensuring:∫ ∞

−∞
f(x) dx = 1,

∫ ∞

−∞

∫ ∞

−∞
f(x, y) dx dy = 1. (16)

The results are shown in Table 2, showing all integrals lie within the expected numerical inte-
gration error. The project’s notebook’s performs this for multiple other configurations to ensure
robust normalisation for all cases.

Distribution Interval Numerical Integral

Crystal Ball gs(X) X ∈ [0, 5] 1.0000004± 7.3× 10−9

X ∈ [−∞,∞] 1.0000000± 4.3× 10−9

Exponential hs(Y ) Y ∈ [0, 10] 1.0000000± 1.1× 10−14

Y ∈ [−∞,∞] 1.0000000± 1.1× 10−14

Uniform gb(X) X ∈ [0, 5] 1.0000000± 1.1× 10−14

X ∈ [−∞,∞] 1.0000000± 3.9× 10−9

Normal hb(Y ) Y ∈ [0, 10] 1.0000000± 4.8× 10−12

Y ∈ [−∞,∞] 1.0000000± 1.2× 10−8

Signal s(x, y) X ∈ [0, 5], Y ∈ [0, 10] 1.0000004± 7.3× 10−9

X ∈ [−∞,∞], Y ∈ [−∞,∞] 1.0000000± 1.5× 10−8

Background b(x, y) X ∈ [0, 5], Y ∈ [0, 10] 1.0000000± 9.7× 10−13

X ∈ [−∞,∞], Y ∈ [−∞,∞] 1.0000000± 8.3× 10−9

Overall f(x, y) X ∈ [0, 5], Y ∈ [0, 10] 1.0000002± 4.4× 10−9

X ∈ [−∞,∞], Y ∈ [−∞,∞] 1.0000000± 1.5× 10−8

Table 2: Numerical integration results for each distribution and integration interval

4 Part c - Marginal Probabilities

Due to the signal and background distributions being independent in X and Y , the marginal
probabilities are simply linear combinations of the component distributions and thus easily im-
plemented by the object-oriented architecture. Derivations of each are outlined below, with the
CDF’s following the same logic:

Marginal PDF in X f(X)

Integral of f(X,Y ) over all X:

f(X) =

∫ ∞

−∞
f(X,Y ) dY, (17a)

= fgs(X)

∫ ∞

−∞
hs(Y ) dY + (1− f)gb(X)

∫ ∞

−∞
hb(Y ) dY, (17b)

= fgs(X) + (1− f)gb(X). (17c)

Marginal PDF in Y f(Y )

Integral of f(X,Y ) over all X:

f(Y ) =

∫ ∞

−∞
f(X,Y ) dX, (18a)

= fhs(Y )

∫ ∞

−∞
gs(X) dX + (1− f)hb(Y )

∫ ∞

−∞
gb(X) dX, (18b)

= fhs(Y ) + (1− f)hb(Y ). (18c)

6



Marginal CDF in X F (X)

Integral of F (X,Y ) over all X:

F (X) = fGs(X) + (1− f)Gb(X). (19)

where:

• Gs(X), Gb(X): the Crystal Ball and Uniform Distribution’s CDFs.

Marginal CDF in Y F (Y )

Integral of joint CDF F (X,Y ) over all Y :

F (Y ) = fHs(Y ) + (1− f)Hb(Y ). (20)

where:

• Hs(Y ), Hb(Y ): the Exponential and Normal Distribution’s CDFs.

4.1 Plotting the Marginal Distributions

Figure 9: Marginal PDFs and CDFs of f(X,Y ): (Top) X marginal PDF and CDF combining
Crystal Ball (signal) and Uniform (background). (Bottom) Y marginal PDF and CDF combining

Exponential (signal) and Normal (background). Total distributions in red

5 Part d - Generating Samples and MLE estimate

5.1 Generating Samples Algorithm

This paper samples from the true 2D distribution f(X,Y ) using an accept-reject algorithm, which
aims to generate the desired number of samples in as few vectorised batches as possible. The
algorithm also determines the PDF’s maximum value upon initialisation allowing it to restrict
the randomly generated samples and increase the acceptance rate significantly. The algorithm is
outlined below:

7



1. Generate an initial batch of samples (default 1000) uniformly over X ∈ [0, 5], Y ∈ [0, 10] and
Z ∈ [0, fmax], and perform an accept-reject step.

2. Estimate the acceptance rate:

Acceptance Rate =
Number of Accepted Samples

Total Number of Samples
. (21)

3. Scale the next batch’s sample size to generate the remaining number of samples (slightly
overestimating to counter statistical fluctuations). A maximum batch size (default 2 million)
also prevents memory overflow:

Batch Size = min

(
1.1×Number of Remaining Samples

Acceptance Rate
,Max Batch Size

)
(22)

4. Perform the accept-reject step on the new batch.

5. Repeat steps 3-4 until the desired number of samples is generated.

This method is tested with 100,000 samples, achieving an acceptance rate of ≈ 0.107, consistent
with the maximum PDF value (≈ 0.218). For all tests, the algorithm successfully generated the
samples in 2 batches (initial batch inclusive). The generated samples’ are plotted in Figure 10,
showing strong agreement with the true distribution.

Figure 10: Verification of sampling method: (Top Left) Sampled joint distribution. (Top Right)
True joint PDF. (Bottom Left) Sampled X values with marginal PDF. (Bottom Right) Sampled

Y values with marginal PDF

8



5.2 Fitting the Samples using Extended MLE

The extended MLE fitting method is implemented by minimising the negative log-likelihood using
the iminuit package’s ‘migrad’ function. Initial parameter guesses are chosen to be offset from
the true values for verification of the method’s convergence and are kept constant throughout the
report to allow the comparability of convergence speeds. Additionally, iminuit is provided with
parameter limits to restrict the search space to physically meaningful parameter values and reduce
run time.

Parameters µ σ β m f λ µb σb

Initial Value 3.1 0.4 1.1 1.5 0.7 0.4 0.1 265
Parameter Limits N/A [0, ] [0, ] [1, ] [0, 1] [0, ] N/A [0, ]

Table 3: Initial parameter guesses and search limits

The parameters’ uncertainties are first evaluated using the ‘hesse’ function, which exploits
the inverse Hessian of the likelihood at its minimum. This method although computationally
efficient within the iminuit package, assumes the uncertainties are a multivariate Gaussian distri-
bution. This assumption breaks down for poorly constrained parameters, especially near parameter
boundaries. The method hence requires verification using the more robust profiled log-likelihoods
to determine uncertainties from (−∆lnL = 0.5). The results of the fitting and both uncertainty
calculations are shown in Table 4.

Figure 11: Profile likelihoods for each parameter. Highlighted are the 1σ (green, ∆ lnL = 0.5)
and 2σ (red, ∆ lnL = 2.0) confidence intervals

9



Parameter Value ± Error(Hessian) True Value Std Errors Away Profile Lower Bound Profile Upper Bound
µ 2.9975± 0.0027 3 0.92 -0.002 0.002
σ 0.3038± 0.0025 0.3 1.51 -0.002 0.002
β 0.9933± 0.0231 1 0.29 -0.015 0.017
m 1.3685± 0.0635 1.4 0.50 -0.041 0.041
λ 0.3045± 0.0021 0.3 2.17 -0.002 0.001
µb 0.0710± 0.0769 0 0.92 -0.056 0.050
σb 2.4827± 0.0362 2.5 0.48 -0.024 0.027
f 0.6050± 0.0036 0.6 1.39 -0.003 0.002
N 100000± 320 100000 0 -440.63 414.70

Table 4: Parameter fit results, including estimates, uncertainties (Hessian), true values, and
bounds

From Table 4, the fitting method provides highly accurate estimates with a sample size of
100,000. The uncertainties derived from the Hessian method, while similar to the profile method,
are slightly overestimated for all parameters (except N), likely due to the large sample size tightly
constraining parameters. Thus narrowing the likelihood beyond the Hessian’s quadratic approxi-
mation. Nonetheless, the minimal over-coverage of the Hessian method does not justify the higher
computational cost of the profile likelihood method, especially for smaller bootstrap sample sizes
(up to 10,000), as used in Section 6. As we move on to analyse the suitability of the fitting method,
with a focus on λ, the corrolation matrix from the Hessian method (Fig 12) shows λ is largely un-
correlated with the other parameters, with the strongest being 0.28 with f . However, it should be
noted for future analysis the strong correlations among the Crystal Ball and Normal distribution
parameters which may cause issues at lower sample sizes.

Figure 12: Correlation matrix of the fitted parameters

5.3 Computational Preformance

To determine the computational performance the runtime of generating and fitting 100,000 samples
is averaged for 100 calls and reported below. Notably for sample generation, a single initial batch
of circa 1 million samples, would result in a slower run time however the algorithm prioritises
minimising it for a range of distributions and sample sizes.

Process Average Time (s) Relative Runtime

Benchmark Process 0.001542 1
Accept Reject Sampling (100,000) 0.183773 119.202

Parameter Fitting 6.582080 4269.37

Table 5: Execution times and relative runtimes for 100,000 samples

10



6 Part e - Parametric Bootstrap

The accuracy and robustness of the Extended MLE fitting method are further evaluated using
a parametric bootstrap, generating and refitting samples from the true distribution. This report
examines the method’s performance across Poisson-varied sample sizes of 500, 1000, 2500, 5000,
and 10000, each using 250 toys. Notably, during bootstrapping for the sample size of 500 data
points, an average of 12 out of 250 toys were unable to converge to a minimum. This suggests
certain parameters were unable to be sufficiently constrained, a topic discussed further within this
section.

This section of the paper predominantly focuses on the fitting of λ, however other parameters’
plots are within the project’s ‘Bootstrap‘ directory. First, we look at the distributions of λ’s fitted
values, Hessian errors, and pulls across the 250 toys, shown in Figure 13. The parametric bootstrap
can be seen to create a normal distribution of fitted values centered around the true value (with
bias’ discussed later). Importantly, despite λ being constrained (λ ≥ 0), even at a sample size of
500, the fitted values remain sufficiently constrained from the parameter’s boundary. Thus, the
Hessian’s Gaussian assumption is valid and will likely provide an accurate quantification of the
uncertainty.

On the other hand, the MLE method struggles to constrainm away from its boundary (m ≥ 1),
even at sample sizes of 10,000, leading to stacking at the boundary. This causes the hessian error
for m to overcover as it fails to account for the truncation of the likelihood surface and an overly
narrow pull distribution. Figure 14 illustrates this issue for a sample size of 500. In studies more
focused on m, the computationally demanding Feldman-Cousins method would provide a greater
understanding of coverage near the boundary.

(a) Fitted m distribution (b) Pull distribution for all parameters

Figure 14: Overcoverage from stacking at the parameter boundary for m (sample size 500)

In Figure 13, as the sample size increases, the width of the fitted λ distribution narrows, and
the Hessian errors’ distribution shifts closer to zero. Finally, to evaluate the Hessian’s accuracy in
quantifying the true uncertainty of the fit, its mean value (and standard deviation) across all toys
is compared to the standard deviation of the fitted values, as shown in Figure 15a.

(a) Hessian errors vs. standard deviation of λ (b) Biases in λ ± Std. Error

Figure 15: Comparison of bias and uncertainty in fitted λ values across sample sizes

11



(a) Fitted Values - 500 (b) Hessian Errors- 500 (c) Pulls - 500

(d) Fitted Values - 1000 (e) Hessian Errors - 1000 (f) Pulls - 1000

(g) Fitted Values - 2500 (h) Hessian Errors - 2500 (i) Pulls - 2500

(j) Fitted Values - 5000 (k) Hessian Errors - 5000 (l) Pulls - 5000

(m) Fitted Values - 10000 (n) Hessian Errors - 10000 (o) Pulls - 10000

Figure 13: Histograms of parameter values, Hessian errors, and pull distributions across all
sample sizes

12



From Figure 15a, the overall fit uncertainty decreases with sample size, as expected. The
Hessian errors closely match the standard deviation of the fitted λ values across all sample sizes,
with a small spread (σ) indicating reliable uncertainty estimation. Alternatively, for parameters
m , µb, and σb (Figure 22) the Hessian errors, while centered around the standard deviation of
the fitted values, exhibit a much greater spread, making them less reliable. This also happens,
although to a lesser extent, to the other Crystal Ball parameters, likely as a result of the poor fitting
for m having knock-on effects and its previously discussed high correlation with these parameters.
Having accessed the uncertainty provided by the Hessian, the MLE’s inherent bias is investigated:

Bias(θ̂) ≈ ¯̂
θbootstrap − θ =

(
1

N

N∑
i=1

θ̂i

)
− θ, Std. Error =

1
√
ntoys

· StdDev(θ̂). (23)

where:

• θ̂, fitted parameter value,

• θ, true parameter value.

Figure 15b, shows the bias on the fitted
¯̂
λ decreases inversely proportionally, a trend seen for

all parameters (Figure 22). This suggests systematic errors in the MLE method, especially for
low sample sizes. This agrees with literature, where MLE is documented to be biased for finite
samples, with O(n−1) shown by the fitted 1

n curve [4]. Despite this, the bias is approximately an
order of magnitude smaller than the fit’s uncertainty for all sample sizes, and thus not the limiting
factor for the accuracy.

Finally, the bias and uncertainty of λ can be summarised using pull distributions (Figure 16)
showing decreasing bias but correct coverage for all samples.

Figure 16: Pull distributions for λ across all sample sizes, with the mean (blue) and standard
deviation (red), including uncertainties

7 Part f - sWeight Projection

This report investigates a second method that determines signal weights in the X dimension
through a one-dimensional Extended MLE fit. These weights are then used to project the signal
component into the Y dimension, isolating it from the background. This approach thus enables
an isolated fit of the signal distribution in Y without background interference. This procedure
is implemented using a combination of the ‘iminuit’ and ‘sWeights’ packages. At first, a single
generated sample of 10,000 is used to demonstrate the method’s validity before applying it to all
bootstrap samples:

Step 1 - Fitting for the overall X dimension

The first step uses an extended unbinned MLE fit to determine the parameters in the X dimension,
hence reducing the parameter dimensions to 6. The fitting method is the same as described in
Section 5 and for clarity, the relevant parameters, guesses, and limits are shown in Table 6. The
additional parameter N is the expected sample count and its initial guess is taken as the sample
size generated from.

13



Parameters µ σ β m f
Initial Value 3.1 0.4 1.1 1.5 0.7
Parameter Limits N/A [0, ] [0, ] [1, ] [0, 1]

Table 6: Initial parameter values and search limits for sWeights Step 1

The results seen for the respective parameters, Table 8, are very comparable to those in Section
5.

Step 2 - Determining the sWeights and projecting signal in Y

The second step calculates the weight for each data point to be a signal event based on the
X dimension’s fitted distribution, using the ‘sWeights’ package. The distribution of weights is
verified through comparison with the true fractional signal and background components, calculated
from the X dimension’s marginal PDFs defined in Section 4. Although exact scaling cannot be
compared due to the sWeights being normalised to the fitted sample sizes Ns and Nb, the shape
of the distribution can seen to strongly agree (Figure 17).

Ns = Nfitted × ffitted Nb = Nfitted × (1− ffitted) (24)

(a) Weights of signal and background in
X-dimension from sWeights

(b) True weights of signal and background in
X-dimension from marginal PDFs

Figure 17: Comparison of true and sWeights-determined distributions in the X-dimension

The weights are then applied to each associated Y variable, scaling its contribution to the signal
component. The signal projection is plotted below with the true signal distribution (scaled for the
samplesize), showing a very strong agreement between them (Figure 18).

Figure 18: Signal projection in the Y -dimension using sWeights

14



7.0.1 Step 3 - Fitting the projected signal in Y

The final step uses a binned MLE fit on the projected signal in Y to determine λ, using an initial
guess and limits consistent with past fits (Table 7).

Parameter λ
Initial Value 0.4
Parameter Limits [0, ]

Table 7: Initial guess and search limits for λ in the signal projection

The final fitted parameters show strong agreement with their true values for the 10,000 samples,
with the majority falling within 1 std deviation of the calculated Hessian errors(Table 8). One
key advantage of this method is the removal of the background distribution’s influence in the
Y dimension, eliminating the need to fit two additional parameters. This significantly reduces
computational overhead, as discussed in Section 8. The method’s robustness and consistency are
analysed through bootstrapping in Section 7.1.

Parameter Value ± Error(Hessian) True Value Std Errors Away
µ 3.0006± 0.0083 3 0.07
σ 0.2931± 0.0080 0.3 0.86
β 0.8683± 0.0664 1 1.98
m 1.7874± 0.3012 1.4 1.29
f 0.5971± 0.0125 0.6 0.23
N 10000± 100 10000 0
λ 0.2991± 0.0055 0.3 0.16

Table 8: Fitted parameters, errors, and deviations from true values using sWeights

7.1 Bootstraping the sWeights Method

The sWeights procedure was then analysed using parameteric bootstraping, using the same gen-
erated samples from Section 6, ie 250 toys with sample sizes of 500, 1000, 2500, 5000 and 10000.
The results for the Crystal Ball distribution parameters align with those in Section 6, where the
fit struggles due to m stacking at the boundary. This in turn effects the accuracy of the other
parameters, which are highly correlated with m. Furthermore, the Hessian errors again fail to re-
liably represent the true uncertainty of the fit, resulting in over coverage and consistently low pull
values. Notably, for a sample size of 500, an average of 13 samples failed to converge, consistent
with the behavior observed in the original MLE fit.

(a) Hessian errors and standard deviation of
fitted λ across sample sizes

(b) Biases in λ ± Std. Error

Figure 19: sWeights fitting method’s bias and uncertainty for λ across sample sizes

The key difference is that the fitted estimates for λ now rely on the X dimension’s as this
determines the data’s weights and thus their projection in Y. Before, in Section 6, the dimension’s
results were largely uncorrelated and thus independent. This presents challenges for uncertainty
quantification as binned MLE fit provides the uncertainty based on the projected data, not the
true distribution. Hence this uncertainty doesn’t account for the compounding effects of X’s fit.

15



As seen in 19a, this results in the hessian error, consistently underestimating the uncertainty of
the fit, evident from the overly wide pull distributions, shown in Figure 20.

Figure 20: Pull distributions for λ using sWeights for all sample sizes, showing mean (blue) and
standard deviation (red)

Finally, the biases are shown to follow a similar trend to Section 6’s, with an O(n−1) trend, as
the fitting is still being performed by an MLE estimator and hence the inherent bias is still present
at finite sample sizes. Once again the bias is consistently an order of magnitude lower than the
uncertainty of the fit, and hence accounted for.

8 Part g - Comparison of Methods

Finally, the report aims to compare the two fitting methods, the standard MLE fitting and the
sWeights procedure, and highlight their respective advantages and disadvantages in experimental
research.

8.1 Computational Performance

The computational performance of the two methods is compared initially through the runtime
of fitting 100,000 samples. Secondly, the typical runtime to perform the fitting for all bootstrap
samples generated in Section 6 are compared:

Method Typical Run Time (s) Rumtime Reduction (%)
Full MLE 6.6 N/A
Full MLE Bootstrap 496.3 N/A
sWeights MLE 4.3 34.8
sWeights MLE Bootstrap 274.8 44.6

Table 9: Comparison of run times for sWeights and full MLE fitting

The sWeights procedure shows a clear advantage in computational performance, with a reduc-
tion in runtime of 34.8% and 44.6% for a single fit and full bootstrapping procedure respectively.
A result of it fitting for 2 fewer parameters (those of the Y dimension’s background distribution).
As we enter the era of exascale experiments, such as the High-Luminosity LHC [1], and the Square
Kilometre Array [3], computational performance is increasingly worth consideration.

8.2 Uncertainty in Fit

Figure 21 shows very strong similarities between both methods’ true uncertainty and bias. The
plot shows that despite the compounding errors from the X dimension, the sWeights procedure
can fit the signal distribution in Y with a similar level of accuracy. However, the drawback of the

16



sWeight procedure, as previously discussed, is that the Hessian errors are underestimated due to
its inability to account for the propagating effects.

(a) Standard deviation of fitted λ across
sample sizes

(b) Bias of fitted λ across sample sizes

Figure 21: Comparison of bias and uncertainty for λ between Normal MLE and sWeights

8.3 Removal of Background Contribution in Y

The main advantage of the sWeights procedure compared to using a full MLE estimate, ‘is that
one avoids the need to parameterise the background density in the control variable‘ [2]. This is
particularly useful when the distribution of the background (or any component) in the control
variable is poorly understood.

8.4 Conclusion

Overall, the sWeights procedure shows clear advantages in computational performance while re-
maining consistent with its uncertainty and bias. However, its main drawback is its inability to
accurately quantify the uncertainty of the fit due to the compounding errors from the X dimension.
Therefore, this method requires further refinement to propagate these errors. It is also worth noting
that the sWeights procedure is particularly applicable to this distribution where the variables are
independent. However, more complicated distributions may require the more generalised Custom
Orthogonal Weight Functions (COWs) [2].

17



9 Appendicies

The repository’s Bootstrap folder contains further plots for all parameters and analysis procedures.

Figure 22: Hessian errors and standard deviation of fitted parameters from original MLE fitting
procedure across sample sizes

Figure 23: Bias of fitted parameters from original MLE fitting across sample sizes

18



Figure 24: Hessian errors and standard deviation of fitted parameters from sweights procedure
across sample sizes

Figure 25: Bias of fitted parameters from sweights procedure across sample sizes

19



9.1 Declaration of Use of Autogeneration Tools

This report made use of Large Language Models (LLMs), primarily ChatGPT and Co-Pilot, to
assist in the development of the statistical analysis pipeline. These tools have been employed for:

• Generating detailed docstrings for the repository’s documentation.

• Formatting plots to enhance presentation quality.

• Performing iterative changes to already defined code.

• Debugging code and identifying issues in implementation.

• Helping with Latex formatting for the report.

• Identifying spelling and punctuation inconsistencies within the report.

• Suggesting more concise phrasing to reduce word count.

References

[1] G Apollinari et al. High Luminosity Large Hadron Collider HL-LHC. en. 2015. doi: 10.5170/
CERN-2015-005.1. url: https://cds.cern.ch/record/2120673.

[2] Hans Dembinski et al. “Custom Orthogonal Weight functions (COWs) for event classification”.
In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrom-
eters, Detectors and Associated Equipment 1040 (Oct. 2022), p. 167270. issn: 0168-9002. doi:
10.1016/j.nima.2022.167270. url: http://dx.doi.org/10.1016/j.nima.2022.167270.

[3] A. M. M. Scaife. “Big telescope, big data: towards exascale with the Square Kilometre Array”.
In: Philosophical Transactions of the Royal Society of London Series A 378.2166, 20190060
(Mar. 2020), p. 20190060. doi: 10.1098/rsta.2019.0060.

[4] Ali A. Al-Shomrani. “An improvement in maximum likelihood estimation of the Burr XII
distribution parameters”. In: AIMS Mathematics 7.9 (2022), pp. 17444–17460. doi: 10.3934/
math.2022961.

20

https://doi.org/10.5170/CERN-2015-005.1
https://doi.org/10.5170/CERN-2015-005.1
https://cds.cern.ch/record/2120673
https://doi.org/10.1016/j.nima.2022.167270
http://dx.doi.org/10.1016/j.nima.2022.167270
https://doi.org/10.1098/rsta.2019.0060
https://doi.org/10.3934/math.2022961
https://doi.org/10.3934/math.2022961

	Introduction
	True 2-Dimensional Model

	Part a - Normalisation of Crystal Ball Distribution
	Part b - Defining the Distributions
	Object-Oriented Architecture
	Applying Truncation
	Initialising Distribution
	Verifying Normalisation

	Part c - Marginal Probabilities
	Plotting the Marginal Distributions

	Part d - Generating Samples and MLE estimate
	Generating Samples Algorithm
	Fitting the Samples using Extended MLE
	Computational Preformance

	Part e - Parametric Bootstrap
	Part f - sWeight Projection
	Step 3 - Fitting the projected signal in Y
	Bootstraping the sWeights Method

	Part g - Comparison of Methods
	Computational Performance
	Uncertainty in Fit
	Removal of Background Contribution in Y
	Conclusion

	Appendicies
	Declaration of Use of Autogeneration Tools


