
Accelerating 21-cm Cosmological Inference
for REACH with JAX/GPUs
Jacob Tutt1,2

1Cavendish Astrophysics, University of Cambridge, UK
2Kavli Institute for Cosmology, Cambridge, UK

REACH Annual Meeting 2025 23 November 2025

Bayesian Inference for REACH

P(θ | D,M) =
p(D | θ,M)p(θ | M)∫
p(D | θ,M)p(θ | M)dθ

=
L(D | θ,M) Π(θ | M)

Z (M)

Prior, Π(θ | M)

Describes our knowledge/
assumptions about the parameters θ
prior to any data.

Likelihood, L(D | θ,M)

Quantifies how well a parameter
choice θ explains the observed data
D.

Posterior, P(θ | D,M)

An updated state of belief about the
parameters θ after incorporating the
data.

Evidence, Z (M)

The total support the data provides
for a model. Crucial for model
comparison.

§ JacobTutt

https://github.com/JacobTutt

Bayesian Inference for REACH

P(θ | D,M) =
p(D | θ,M)p(θ | M)∫
p(D | θ,M)p(θ | M)dθ

=
L(D | θ,M) Π(θ | M)

Z (M)

Prior, Π(θ | M)

Describes our knowledge/
assumptions about the parameters θ
prior to any data.

Likelihood, L(D | θ,M)

Quantifies how well a parameter
choice θ explains the observed data
D.

Posterior, P(θ | D,M)

An updated state of belief about the
parameters θ after incorporating the
data.

Evidence, Z (M)

The total support the data provides
for a model. Crucial for model
comparison.

§ JacobTutt

https://github.com/JacobTutt

Bayesian Inference for REACH

P(θ | D,M) =
p(D | θ,M)p(θ | M)∫
p(D | θ,M)p(θ | M)dθ

=
L(D | θ,M) Π(θ | M)

Z (M)

Prior, Π(θ | M)

Describes our knowledge/
assumptions about the parameters θ
prior to any data.

Likelihood, L(D | θ,M)

Quantifies how well a parameter
choice θ explains the observed data
D.

Posterior, P(θ | D,M)

An updated state of belief about the
parameters θ after incorporating the
data.

Evidence, Z (M)

The total support the data provides
for a model. Crucial for model
comparison.

§ JacobTutt

https://github.com/JacobTutt

Bayesian Inference for REACH

P(θ | D,M) =
p(D | θ,M)p(θ | M)∫
p(D | θ,M)p(θ | M)dθ

=
L(D | θ,M) Π(θ | M)

Z (M)

Prior, Π(θ | M)

Describes our knowledge/
assumptions about the parameters θ
prior to any data.

Likelihood, L(D | θ,M)

Quantifies how well a parameter
choice θ explains the observed data
D.

Posterior, P(θ | D,M)

An updated state of belief about the
parameters θ after incorporating the
data.

Evidence, Z (M)

The total support the data provides
for a model. Crucial for model
comparison.

§ JacobTutt

https://github.com/JacobTutt

Bayesian Inference for REACH

P(θ | D,M) =
p(D | θ,M)p(θ | M)∫
p(D | θ,M)p(θ | M)dθ

=
L(D | θ,M) Π(θ | M)

Z (M)

Prior, Π(θ | M)

Describes our knowledge/
assumptions about the parameters θ
prior to any data.

Likelihood, L(D | θ,M)

Quantifies how well a parameter
choice θ explains the observed data
D.

Posterior, P(θ | D,M)

An updated state of belief about the
parameters θ after incorporating the
data.

Evidence, Z (M)

The total support the data provides
for a model. Crucial for model
comparison

§ JacobTutt

https://github.com/JacobTutt

Bayesian Inference for REACH

P(θ | D,M) =
p(D | θ,M)p(θ | M)∫
p(D | θ,M)p(θ | M)dθ

=
L(D | θ,M) Π(θ | M)

Z (M)

Prior, Π(θ | M)

Describes our knowledge/
assumptions about the parameters θ
prior to any data.

Likelihood, L(D | θ,M)

Quantifies how well a parameter
choice θ explains the observed data
D.

Posterior, P(θ | D,M)

An updated state of belief about the
parameters θ after incorporating the
data.

Evidence, Z (M)

The total support the data provides
for a model. Crucial for model
comparison.

§ JacobTutt

https://github.com/JacobTutt

Parametrised Forward Model

The Global 21 cm Signal

Our inference aims to constrain
the astrophysical parameters θ

governing the evolution of:

T21(ν | θ)

GlobalEMU; Bevins et al. 2021

f∗ Star formation efficiency
Vc Minimum virial circular velocity
fX X-ray efficiency
τ CMB optical depth
α X-ray SED power-law slope
νmin Low-energy cutoff of X-ray SED
Rmfp Mean free path of ionising photons

Figure from Bevins (2023).

§ JacobTutt

https://github.com/JacobTutt

Parametrised Forward Model

The Global 21 cm Signal

The astrophysical parameters - ≈ 7
params θ:

T21(ν | θ)

Figure from Chapman, Jelic (2019).

The Galactic Foregrounds

Model for the diffuse Galactic
emission by splitting the sky into N
spectral-index regions, each
parametised by βi (Anstey et al
2021)

Figure from Anstey et al (2021).

§ JacobTutt

https://github.com/JacobTutt

Parametrised Forward Model

The Global 21 cm Signal

The astrophysical parameters - ≈ 7
params θ21:

T21(ν | θ)

The Hot Horizon
Modeling an emissive and reflective
horizon around the REACH
telescope requiring parameterising
soil temperature Tsoil and reflection
coeff |Γ|. (Pattison et al 2024)

The Galactic Foregrounds

Physics-motivated model for the
diffuse Galactic emission ≈ 15 − 65
params θfor :

Tsky(ν | θ)

§ JacobTutt

https://github.com/JacobTutt

Parametrised Forward Model

The Global 21 cm Signal

The astrophysical parameters - ≈ 7
params θ21:

T21(ν | θ)

The Hot Horizon
Modeling an emissive and reflective
horizon around the REACH
telescope requiring 2 extra params:
Tsoil and |Γ|.

The Galactic Foregrounds

Physics-motivated model for the
diffuse Galactic emission ≈ 15 − 65
regions / params θfor :

Tsky(ν | θ)

Likelihood / Noise Structure
Different noise parameters (θnoise).
(Scheutwinkel, 2023)

▶ Gaussian: θnoise = {σL}

▶ Generalised Normal: θnoise = {βL, σL}

▶ Radiometric: θnoise = {Trec, η, σradio}

§ JacobTutt

https://github.com/JacobTutt

Parametrised Forward Model

The Global 21 cm Signal

The astrophysical parameters - ≈ 7
params θ21:

T21(ν | θ)

The Hot Horizon
Modeling an emissive and reflective
horizon around the REACH
telescope requiring 2 extra params:
Tsoil and |Γ|.

The Galactic Foregrounds

Physics-motivated model for the
diffuse Galactic emission ≈ 15 − 65
regions / params θfor :

Tsky(ν | θ)

Likelihood / Noise Structure
Different noise parameters (θnoise).
(Scheutwinkel, 2023)

▶ Gaussian: θnoise = {σL}

▶ Generalised Normal: θnoise = {βL, σL}

▶ Radiometric: θnoise = {Trec, η, σradio}

And More:

▶ RFI Flagging (D Anstey and S Leeney, 2024)
▶ Extra-galactic Point Sources (S Mittal et al 2024)
▶ Forground Map Errors (M Pagona et al 2024)

§ JacobTutt

https://github.com/JacobTutt

High-Dimensional Inference

Typical analyses involve 30−80 parameters:

▶ ∼ 7 astrophysical
▶ ∼ 15−65 foreground

▶ ∼ 2 horizon
▶ ∼ 1−3 noise

⇒ millions of likelihood calls, ∼1-20 hours per run on CPUs.

Using:
- Chromatic functions Ki,j,k ,Ri,j,k , Ji : (encode beam + instrument response)
- Neural network emulator TS(ν, θS) (fast 21-cm signal generation)

logL =
∑
i,j

[
− 1

2 log
(

2π θ
2
σ

)
− 1

2

(TD(ν, t) − (TF (ν, t, θF) + TS(ν, θS))

θσ

)2
]

TFi,j
=
∑

k

Ki,j,k Fi (θFk
) +
∑

k

Ri,j,k Fi (θFk
) |Γ|α + Ji TH (1 + |Γ|α)

Credit: Pattison et al 2025

Inference reduces to matrix multiplications + vector operations.
⇒ Ideally suited to the SIMD/SIMT architecture of modern GPUs.

To allow wider time ranges and higher-dim models:

Our pipelines must move to GPU-accelerated inference.

§ JacobTutt

https://github.com/JacobTutt

High-Dimensional Inference

Typical analyses involve 30−80 parameters:

▶ ∼ 7 astrophysical
▶ ∼ 15−65 foreground

▶ ∼ 2 horizon
▶ ∼ 1−3 noise

⇒ millions of likelihood calls, ∼1-20 hours per run on CPUs.

Using:
- Chromatic functions Ki,j,k ,Ri,j,k , Ji : (encode beam + instrument response)
- Neural network emulator TS(ν, θS) (fast 21-cm signal generation)

logL =
∑
i,j

[
− 1

2 log
(

2π θ
2
σ

)
− 1

2

(TD(ν, t) − (TF (ν, t, θF) + TS(ν, θS))

θσ

)2
]

TFi,j
=
∑

k

Ki,j,k Fi (θFk
) +
∑

k

Ri,j,k Fi (θFk
) |Γ|α + Ji TH (1 + |Γ|α)

Credit: Pattison et al 2025

Inference reduces to matrix multiplications + vector operations.
⇒ Ideally suited to the SIMD/SIMT architecture of modern GPUs.

To allow wider time ranges and higher-dim models:

Our pipelines must move to GPU-accelerated inference.

§ JacobTutt

https://github.com/JacobTutt

High-Dimensional Inference

Typical analyses involve 30−80 parameters:

▶ ∼ 7 astrophysical
▶ ∼ 15−65 foreground

▶ ∼ 2 horizon
▶ ∼ 1−3 noise

⇒ millions of likelihood calls, ∼1-20 hours per run on CPUs.

Using:
- Chromatic functions Ki,j,k ,Ri,j,k , Ji : (encode beam + instrument response)
- Neural network emulator TS(ν, θS) (fast 21-cm signal generation)

logL =
∑
i,j

[
− 1

2 log
(

2π θ
2
σ

)
− 1

2

(TD(ν, t) − (TF (ν, t, θF) + TS(ν, θS))

θσ

)2
]

TFi,j
=
∑

k

Ki,j,k Fi (θFk
) +
∑

k

Ri,j,k Fi (θFk
) |Γ|α + Ji TH (1 + |Γ|α)

Credit: Pattison et al 2025

Inference reduces to matrix multiplications + vector operations.
⇒ Ideally suited to the SIMD/SIMT architecture of modern GPUs.

To allow wider time ranges and higher-dim models:

Our pipelines must move to GPU-accelerated inference.

§ JacobTutt

https://github.com/JacobTutt

Modern Computational Architecture

CPU Architecture

▶ Few powerful cores (10s)
▶ Complex control logic
▶ Optimised for sequential workloads
▶ Large caches, low latency

GPU Architecture

▶ Thousands of lightweight cores
▶ Massive parallelism (SIMT)
▶ High memory bandwidth
▶ Excel at batched vectorised operations

Image Credit: AMD

§ JacobTutt

https://github.com/JacobTutt

An Introduction to JAX

High-performance
numerical-computing
and large-scale
machine learning

Automatic Differentiation

(∇f)(x)i =
∂f
∂xi

(x) =⇒ jax.grad(f)(x)

For more details on Autodiff/Dual Numbers see
§ JacobTutt/dual autodiff package

XLA Compilation
▶ Transforms functions into optimised machine code

▶ Provides python flexibility alongside compiled language
preformance

f (x) =⇒ jax.jit(f)(x)

Automatic Vectorisation and Parallelisation
▶ jax.vmap: automatic vectorisation over batches of data

▶ jax.pmap: parallel execution across multiple XLA devices

§ JacobTutt

https://github.com/JacobTutt/dual_autodiff_package
https://github.com/JacobTutt

An Introduction to JAX

High-performance
numerical-computing
and large-scale
machine learning

Automatic Differentiation

(∇f)(x)i =
∂f
∂xi

(x) =⇒ jax.grad(f)(x)

For more details on Autodiff/Dual Numbers see
§ JacobTutt/dual autodiff package

XLA Compilation
▶ Transforms functions into optimised machine code

▶ Provides python flexibility alongside compiled language
preformance

f (x) =⇒ jax.jit(f)(x)

Automatic Vectorisation and Parallelisation
▶ jax.vmap: automatic vectorisation over batches of data

▶ jax.pmap: parallel execution across multiple XLA devices

§ JacobTutt

https://github.com/JacobTutt/dual_autodiff_package
https://github.com/JacobTutt

An Introduction to JAX

High-performance
numerical-computing
and large-scale
machine learning

Automatic Differentiation

(∇f)(x)i =
∂f
∂xi

(x) =⇒ jax.grad(f)(x)

For more details on Autodiff/Dual Numbers see
§ JacobTutt/dual autodiff package

XLA Compilation
▶ Transforms functions into optimised machine code

▶ Provides python flexibility alongside compiled language
preformance

f (x) =⇒ jax.jit(f)(x)

Automatic Vectorisation and Parallelisation
▶ jax.vmap: automatic vectorisation over batches of data

▶ jax.pmap: parallel execution across multiple XLA devices

§ JacobTutt

https://github.com/JacobTutt/dual_autodiff_package
https://github.com/JacobTutt

An Introduction to JAX

High-performance
numerical-computing
and large-scale
machine learning

Automatic Differentiation

(∇f)(x)i =
∂f
∂xi

(x) =⇒ jax.grad(f)(x)

For more details on Autodiff/Dual Numbers see
§ JacobTutt/dual autodiff package

XLA Compilation
▶ Transforms functions into optimised machine code

▶ Provides python flexibility alongside compiled language
preformance

f (x) =⇒ jax.jit(f)(x)

Automatic Vectorisation and Parallelisation
▶ jax.vmap: automatic vectorisation over batches of data

▶ jax.pmap: parallel execution across multiple XLA devices

§ JacobTutt

https://github.com/JacobTutt/dual_autodiff_package
https://github.com/JacobTutt

Benchmarking Performance Increases

Data/ Chromaticity Function Generation

1. Foreground model
Build Tsky(Ω, ν) with base + spectral index maps (power-law scaling around ν0).

2. Galactic Transforms
Transform maps from Galactic to Local (AltAz) frames

3. Lunar / horizon environment
Inject lunar emission and horizon + soil emission/reflection model.

4. Antenna convolution
Apply chromatic antenna pattern A(ν,Ω), and average over the sky: Tant(ν, t).

5. Time reduction
Optionally collapse time dimension (Averaged vs Separated).

6. Noise model
Add instrumental noise using the selected model (Gaussian, radiometric, etc.).

7. 21-cm signal injection
Add the cosmological global signal model T21(ν).

§ JacobTutt

https://github.com/JacobTutt

Benchmarking Performance Increases

Data Generation Pipeline
▶ Computed for 13 time intervals

Configuration Old (s) New (s)
Ave No Horizon 661 50
Ave Horizon 655 50
Sep No Horizon 725 52
Sep Horizon 813 53

* Old pipeline - 40-core CPU node (£0.40/hr)
* New pipeline - NVIDIA A100 GPU(£0.55/hr)

Key Takeaway: Speed up of up to 15X
(11X Financial Saving)

§ JacobTutt

https://github.com/JacobTutt

Benchmarking Performance Increases

Chromaticity Function Generation
▶ Computed for 13 time intervals and 35 regions

Configuration Old (s) New (s)
Ave No Horizon 328 51
Ave Horizon 406 52
Sep No Horizon 1474 53
Sep Horizon 2326 54

* Old pipeline - 40-core CPU node (£0.40/hr)
* New pipeline - NVIDIA A100 GPU(£0.55/hr)

Key Takeaway: Speed up of up to 43X
(31X Financial Saving)

§ JacobTutt

https://github.com/JacobTutt

Benchmarking Performance Increases

Data / Chromaticity Function Generation

Pipeline Stage Run Time
Initialising/ Loading Data ∼ O(24s)
Galactic Transforms (CPU) ∼ O(26s)
Spectral Index Broadcasting
Sky Map Interpolation
Lunar / Horizon Injection
Antenna Convolution
Time Averaging
Noise Model
21-cm Signal Injection

∼ O(0.75s)

§ JacobTutt

https://github.com/JacobTutt

Benchmarking Performance Increases

Individual Likelihood Call
▶ Computed for 13 time intervals and 35 regions

Configuration Old(ms) New(ms)
Ave No Horizon 0.31 0.08
Ave Horizon 0.47 0.12
Sep No Horizon 1.05 0.08
Sep Horizon 2.80 0.13

* Averaged Over 1000 Likelihood Calls
* Old pipeline - 40-core CPU node (£0.40/hr)
* New pipeline - NVIDIA A100 GPU(£0.55/hr)

Key Takeaway: Speed up of up to 21X
(15X Financial Saving)

§ JacobTutt

https://github.com/JacobTutt

Traditional Nested Sampling

Nested Sampling provides:
▶ Posterior samples
▶ The Bayesian Evidence

Evidence integral:

Z =

∫
Θ
L(θ)π(θ) dθ =

∫ 1

0
L(ξ) dξ.

Prior volume (mass):

ξ(L) =

∫
L(θ)>L

π(θ) dθ =⇒ inverse relation: L(ξ)

Shrinkage of the prior mass:

ξi = t ξi−1,

Expected shrinkage:

E[log t] = −
1

Nlive
=⇒ ξi ≈ exp

(
−

i

Nlive

)

Z ≈
∑

i

Li (ξi−1 − ξi) =
∑

i

Li

[
exp

(
−

i − 1

Nlive

)
− exp

(
−

i + 1

Nlive

)]

§ JacobTutt

https://github.com/JacobTutt

Traditional Nested Sampling

Nested Sampling provides:
▶ Posterior samples
▶ The Bayesian Evidence

Evidence integral:

Z =

∫
Θ
L(θ)π(θ) dθ =

∫ 1

0
L(ξ) dξ.

Prior volume (mass):

ξ(L) =

∫
L(θ)>L

π(θ) dθ =⇒ inverse relation: L(ξ)

Shrinkage of the prior mass:

ξi = t ξi−1,

Expected shrinkage:

E[log t] = −
1

Nlive
=⇒ ξi ≈ exp

(
−

i

Nlive

)

Z ≈
∑

i

Li (ξi−1 − ξi) =
∑

i

Li

[
exp

(
−

i − 1

Nlive

)
− exp

(
−

i + 1

Nlive

)]

§ JacobTutt

https://github.com/JacobTutt

Traditional Nested Sampling

Nested Sampling provides:
▶ Posterior samples
▶ The Bayesian Evidence

Evidence integral:

Z =

∫
Θ
L(θ)π(θ) dθ =

∫ 1

0
L(ξ) dξ.

Prior volume (mass):

ξ(L) =

∫
L(θ)>L

π(θ) dθ =⇒ inverse relation: L(ξ)

Shrinkage of the prior mass:

ξi = t ξi−1,

Expected shrinkage:

E[log t] = −
1

Nlive
=⇒ ξi ≈ exp

(
−

i

Nlive

)

Z ≈
∑

i

Li (ξi−1 − ξi) =
∑

i

Li

[
exp

(
−

i − 1

Nlive

)
− exp

(
−

i + 1

Nlive

)]

§ JacobTutt

https://github.com/JacobTutt

Traditional Nested Sampling

Nested Sampling provides:
▶ Posterior samples
▶ The Bayesian Evidence

Evidence integral:

Z =

∫
Θ
L(θ)π(θ) dθ =

∫ 1

0
L(ξ) dξ.

Prior volume (mass):

ξ(L) =

∫
L(θ)>L

π(θ) dθ =⇒ inverse relation: L(ξ)

Shrinkage of the prior mass:

ξi = t ξi−1,

Expected shrinkage:

E[log t] = −
1

Nlive
=⇒ ξi ≈ exp

(
−

i

Nlive

)

Z ≈
∑

i

Li (ξi−1 − ξi) =
∑

i

Li

[
exp

(
−

i − 1

Nlive

)
− exp

(
−

i + 1

Nlive

)]

§ JacobTutt

https://github.com/JacobTutt

Traditional Nested Sampling

Nested Sampling provides:
▶ Posterior samples
▶ The Bayesian Evidence

Evidence integral:

Z =

∫
Θ
L(θ)π(θ) dθ =

∫ 1

0
L(ξ) dξ.

Prior volume (mass):

ξ(L) =

∫
L(θ)>L

π(θ) dθ =⇒ inverse relation: L(ξ)

Shrinkage of the prior mass:

ξi = t ξi−1,

Expected shrinkage:

E[log t] = −
1

Nlive
=⇒ ξi ≈ exp

(
−

i

Nlive

)

Z ≈
∑

i

Li (ξi−1 − ξi) =
∑

i

Li

[
exp

(
−

i − 1

Nlive

)
− exp

(
−

i + 1

Nlive

)]

§ JacobTutt

https://github.com/JacobTutt

Traditional Nested Sampling

Nested Sampling provides:
▶ Posterior samples
▶ The Bayesian Evidence

Evidence integral:

Z =

∫
Θ
L(θ)π(θ) dθ =

∫ 1

0
L(ξ) dξ.

Prior volume (mass):

ξ(L) =

∫
L(θ)>L

π(θ) dθ =⇒ inverse relation: L(ξ)

Shrinkage of the prior mass:

ξi = t ξi−1,

Expected shrinkage:

E[log t] = −
1

Nlive
=⇒ ξi ≈ exp

(
−

i

Nlive

)

Z ≈
∑

i

Li (ξi−1 − ξi) =
∑

i

Li

[
exp

(
−

i − 1

Nlive

)
− exp

(
−

i + 1

Nlive

)]

§ JacobTutt

https://github.com/JacobTutt

Traditional Nested Sampling

Nested Sampling provides:
▶ Posterior samples
▶ The Bayesian Evidence

Evidence integral:

Z =

∫
Θ
L(θ)π(θ) dθ =

∫ 1

0
L(ξ) dξ.

Prior volume (mass):

ξ(L) =

∫
L(θ)>L

π(θ) dθ =⇒ inverse relation: L(ξ)

Shrinkage of the prior mass:

ξi = t ξi−1,

Expected shrinkage:

E[log t] = −
1

Nlive
=⇒ ξi ≈ exp

(
−

i

Nlive

)

Z ≈
∑

i

Li (ξi−1 − ξi) =
∑

i

Li

[
exp

(
−

i − 1

Nlive

)
− exp

(
−

i + 1

Nlive

)]

§ JacobTutt

https://github.com/JacobTutt

Traditional Nested Sampling

Nested Sampling provides:
▶ Posterior samples
▶ The Bayesian Evidence

Evidence integral:

Z =

∫
Θ
L(θ)π(θ) dθ =

∫ 1

0
L(ξ) dξ.

Prior volume (mass):

ξ(L) =

∫
L(θ)>L

π(θ) dθ =⇒ inverse relation: L(ξ)

Shrinkage of the prior mass:

ξi = t ξi−1,

Expected shrinkage:

E[log t] = −
1

Nlive
=⇒ ξi ≈ exp

(
−

i

Nlive

)

Z ≈
∑

i

Li (ξi−1 − ξi) =
∑

i

Li

[
exp

(
−

i − 1

Nlive

)
− exp

(
−

i + 1

Nlive

)]

§ JacobTutt

https://github.com/JacobTutt

Traditional Nested Sampling

Nested Sampling provides:
▶ Posterior samples
▶ The Bayesian Evidence

Evidence integral:

Z =

∫
Θ
L(θ)π(θ) dθ =

∫ 1

0
L(ξ) dξ.

Prior volume (mass):

ξ(L) =

∫
L(θ)>L

π(θ) dθ =⇒ inverse relation: L(ξ)

Shrinkage of the prior mass:

ξi = t ξi−1,

Expected shrinkage:

E[log t] = −
1

Nlive
=⇒ ξi ≈ exp

(
−

i

Nlive

)

Z ≈
∑

i

Li (ξi−1 − ξi) =
∑

i

Li

[
exp

(
−

i − 1

Nlive

)
− exp

(
−

i + 1

Nlive

)]

§ JacobTutt

https://github.com/JacobTutt

Traditional Nested Sampling

Nested Sampling provides:
▶ Posterior samples
▶ The Bayesian Evidence

Evidence integral:

Z =

∫
Θ
L(θ)π(θ) dθ =

∫ 1

0
L(ξ) dξ.

Prior volume (mass):

ξ(L) =

∫
L(θ)>L

π(θ) dθ =⇒ inverse relation: L(ξ)

Shrinkage of the prior mass:

ξi = t ξi−1,

Expected shrinkage:

E[log t] = −
1

Nlive
=⇒ ξi ≈ exp

(
−

i

Nlive

)

Z ≈
∑

i

Li (ξi−1 − ξi) =
∑

i

Li

[
exp

(
−

i − 1

Nlive

)
− exp

(
−

i + 1

Nlive

)]

§ JacobTutt

https://github.com/JacobTutt

Accelerated Nested Sampling

Traditional nested sampling (serial):
▶ Remove one ‘worst’ live point each iteration.
▶ New point conditioned on:

L > Lmin

▶ Inherently sequential MCMC slice samples
▶ PolyChord - Handley et al 2025

Accelerated nested sampling (parallel):
▶ Discard a batch of ndel ‘worst’ points.
▶ All replacements conditioned on:

L(θ) > Lmin Lmin = max{L1, . . . ,Lndel}

▶ Sample each replacement independently
⇒ vectorised (vmap) across GPU

▶ Blackjax

▶ Cabezas at al 2024, Yallup et al 2025

§ JacobTutt

https://github.com/JacobTutt

Accelerated Nested Sampling

Traditional nested sampling (serial):
▶ Remove one ‘worst’ live point each iteration.
▶ New point conditioned on:

L > Lmin

▶ Inherently sequential MCMC slice samples
▶ PolyChord - Handley et al 2025

Accelerated nested sampling (parallel):
▶ Discard a batch of ndel ‘worst’ points.
▶ All replacements conditioned on:

L(θ) > Lmin Lmin = max{L1, . . . ,Lndel}

▶ Sample each replacement independently
⇒ vectorised (vmap) across GPU

▶ Blackjax

▶ Cabezas at al 2024, Yallup et al 2025

§ JacobTutt

https://github.com/JacobTutt

Benchmarking Nested Sampling

Time Separated Horizon Model Fits

Configuration
Old Time

(Hr:Min:Sec)
New Time
(Min:Sec)

Speed
Factor

Price
Factor

15 Reg (19 Param) 12:00:00* 00:00:49 881* 641*
20 Reg (24 Param) 12:00:00* 00:02:00 360* 262*
35 Reg (39 Param) 12:00:00* 00:20:32 35* 26*

* CSD3 timed out prior to completion of fitting - thus lower limits

NS Parameter Scaling Signal Recovery

*Time-Separated, Gaussian Signal, 20 Region, No Horizon

§ JacobTutt

https://github.com/JacobTutt

Future of REACH Pipeline?

Accelerated Forward Model:

Tobs(ν) = T21(ν) + TFG(ν) + σ(ν)

Configuration New (ms)
Ave No Horizon 0.59
Ave Horizon 0.63
Sep No Horizon 0.61
Sep Horizon 0.59

* Averaged over 1000 forward model calls
* Run on an NVIDIA A100 GPU (£0.55/hr)
* Gaussian signal and noise structure

Note: An order of magnitude faster without noise addition.

Future of REACH Simulations

▶ XLA compilation and full vectorisation / parallelisation allows:
O(106) simulations per second

§ JacobTutt

https://github.com/JacobTutt

Future of REACH Pipeline?

Accelerated Forward Model:

Tobs(ν) = T21(ν) + TFG(ν) + σ(ν)

Configuration New (ms)
Ave No Horizon 0.59
Ave Horizon 0.63
Sep No Horizon 0.61
Sep Horizon 0.59

* Averaged over 1000 forward model calls
* Run on an NVIDIA A100 GPU (£0.55/hr)
* Gaussian signal and noise structure

Note: An order of magnitude faster without noise addition.

Future of REACH Simulations

▶ XLA compilation and full vectorisation / parallelisation allows:
O(106) simulations per second

§ JacobTutt

https://github.com/JacobTutt

Future of REACH Pipeline?

Simulation Based Inference
As we begin to consider more parameterisations of our system

▶ eg. Parameterised/ Emulated Beam Pattern (+4/5)
▶ Saxena et al 2024 - TMNRE

Boddy et al 2022

§ JacobTutt

https://github.com/JacobTutt

Questions

Thank you for your attention!
Jacob Tutt

Department of Physics, University of Cambridge
jlt67@cam.ac.uk

§ REACH-telescope/REACH data analysis gpu

§ JacobTutt

https://github.com/REACH-telescope/REACH_data_analysis_gpu
https://github.com/JacobTutt

An Introduction to JAX

High-performance
numerical-computing
and large-scale
machine learning

Automatic Differentiation
Provides ‘free’ exact derivatives of numerical at
machine precision by systematically applying the
chain rule.

(∇f)(x)i =
∂f
∂xi

(x) =⇒ jax.grad(f)(x)

For more details on Autodiff/Dual Numbers see
§ JacobTutt/dual autodiff package

Gradient-based Optimisation
JAX computes gradients of a loss function:

∇θ L(θ) = jax.grad(L)(θ)

Exploited during ML training’s gradient
descent loops using Optax’s optimisers
(e.g. Adam):

θt+1 = θt − α
mt√
vt + ϵ

Hamiltonian Monte Carlo/ NUTS
Exploits gradients of the log-posterior to
accelerate exploration of parameter space:

∇θ log p(θ | D)

BlackJAX enables efficient sampler
implementations (eg via Leapfrog Integration).

(p, q) −→ (p′, q′)

§ JacobTutt

https://github.com/JacobTutt/dual_autodiff_package
https://github.com/JacobTutt

An Introduction to JAX

High-performance
numerical-computing
and large-scale
machine learning

XLA Compilation
Transforms functions into optimised machine code:

▶ Inputs are wrapped in tracers

▶ JAX operation mapped to a computation graph (intermediate).

▶ jaxpr then device-dependently XLA compiled

f (x) =⇒ jax.jit(f)(x)

Compiled Languages

▶ Ahead-of-time compilation to
machine code

▶ Static typing and memory layout
▶ Highly optimised loops / vectorisation

Pros: low-level control, maximum hardware
efficiency.

Python + Compiled Speed

▶ Python - slow interpreted language.
▶ Produces near-C++ speeds
▶ Supports GPUs with little code changes

JAX provides Python’s flexibility with
compiled-language performance.

§ JacobTutt

https://github.com/JacobTutt

An Introduction to JAX

High-performance
numerical-computing
and large-scale
machine learning

Automatic Vectorisation and Parallelisation
▶ jax.vmap: automatic vectorisation over batches of data

▶ Deals with batches inside primitive operations

▶ jax.pmap: parallel execution across multiple XLA devices

▶ True hardware-level parallelism (SPMD)

f (x) =⇒ vmap(f)(X) f (x) =⇒ pmap(f)(X)

From Loops to Vectorisation
Old way (NumPy/Python):

outputs = []

for i in range(N):

outputs.append(f(xs[i]))

New way (JAX):

vmap(f)(x1:N)

CPU to GPU Parallelism
Old way (MPI / multi-CPU):

with ProcessPoolExecutor() as ex:

results = list(ex.map(f, xs))

New way (JAX):

pmap(f)(xdevices)

§ JacobTutt

https://github.com/JacobTutt

