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data.



https://github.com/JacobTutt

Bayesian Inference for REACH

p(D16,M)p(6 | M) L(D]6,M)N(G | M)
[ p(D]0,M)p(0 | M)do — Z(M)

Prior, (6 | M) Likelihood, £(D | 6, M)

Describes our knowledge/ Quantifies how well a parameter
assumptions about the parameters 6 choice 0 explains the observed data
prior to any data.

An updated state of belief about the  The total support the data provides
parameters 6 after incorporating the  for a model. Crucial for model
data. comparison.

PO | D,M) =



https://github.com/JacobTutt

Bayesian Inference for REACH

p(D [0, M)p(9 | M) _ £(D|0.M)N(0| M)
T o(D 19, M)p(d | M)dd ~ Z(M)

Prior, (6 | M) Likelihood, £(D | 6, M)

Describes our knowledge/ Quantifies how well a parameter
assumptions about the parameters 6 choice 0 explains the observed data
prior to any data.

An updated state of belief about the  The total support the data provides
parameters 6 after incorporating the  for a model. Crucial for model
data. comparison

PO | D,M) =

UNIVERSITY OF | cayendish Laboratory

CAMBRIDGE | Department of Physics  * 080 i © JacobTutt


https://github.com/JacobTutt

Bayesian Inference for REACH
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Parametrised Forward Model

The Global 21 cm Signall GlobalEMU; Bevins et al. 2021
Our inference aims to constrain f. Star formation efficiency
the astrophysical parameters 6 Ve Minimum virial circular velocity
. . . fx X-ray efficiency
governing the evolution of: . CMB optical depth
T (1/ | 9) «@ X-ray SED power-law slope

Vmin Low-energy cutoff of X-ray SED
Rns  Mean free path of ionising photons
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Parametrised Forward Model

The Global 21 cm Signal The Galactic Foregrounds

The astrophysical parameters - ~ 7 Model for the diffuse Galactic
params emission by splitting the sky into N

spectral-index regions, each
Ta1(v | 0) parametised by 5; (Anstey et al
2021)

CD/EGR
oy 6 Regions

@150 MHz

Figure from Chapman, Jelic (2019).
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Parametrised Forward Model

The Global 21 cm Signal The Galactic Foregrounds

The astrophysical parameters - ~ 7 Physics-motivated model for the
params 6o1: diffuse Galactic emission ~ 15 — 65

params 6y, :

Tar(v | 0) Tsiy(v | 0)

The Hot Horizon

Modeling an emissive and reflective
horizon around the REACH
telescope requiring parameterising
soil temperature T, and reflection
coeff |I'|. (Pattison et al 2024)
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Parametrised Forward Model

The Global 21 cm Signal The Galactic Foregrounds

The astrophysm:a' parameters - PhySICS mOt|Vated mOde| fOI‘ the
params f1: diffuse Galactic emission ~ 15 — 65
regions / params 6Oy, :
T21(v | 0) Toky (v | 6)

The Hot Horizon Likelihood / Noise Structure

Modeling an emissive and reflective  Different noise parameters (0noise)-

horizon around the REACH el )
telescope requiring 2 extra params: > Gausslan: fnoise = {01}
Tsoi @and |[|. > Generalised Normal: 0, = {8;,0.}

» Radiometric: 0,0ise = { Trec, 7, Oradio }
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Parametrised Forward Model

The Global 21 cm Signal The Galactic Foregrounds

The astrophysical parameters - ~ 7~ Physics-motivated model for the
params 61: diffuse Galactic emission ~ 15 — 65

And More:
» RFI Flagging (D Anstey and S Leeney, 2024)

I » Extra-galactic Point Sources (S Mittal et al 2024)
» Forground Map Errors (M Pagona et al 2024)

v

Ty

IUlUD\JUPU quunlllg Z CAlla pdld”lb.
Tsoi @and |[|. > Generalised Normal: 0,,.i.c = {8;,0.}

» Radiometric: 0,0ise = { Trec, 7, Oradio }

UNIVERSITY OF | cavendish Laboratory

CAMBRIDGE ' pepartment of Physics © JacobTutt


https://github.com/JacobTutt

High-Dimensional Inference

Typical analyses involve 30—80 parameters:

» ~ 7 astrophysical » ~ 2 horizon
» ~ 15—65 foreground > ~ 1-3noise

= millions of likelihood calls, ~1-20 hours per run on CPUs.
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High-Dimensional Inference

Typical analyses involve 30—80 parameters:

» ~ 7 astrophysical » ~ 2 horizon
» ~ 15—65 foreground > ~ 1-3noise

= millions of likelihood calls, ~1-20 hours per run on CPUs.

Using:
- Chromatic functions K;; «, R x, Ji: (encode beam + instrument response)
- Neural network emulator Ts(v, 0s) (fast 21-cm signal generation)

(Te(v y 2
g £ =3 [_% |og(27‘r 9(27) -1 (TD(M ) — (Te(v, 8, 0F) + Ts( 795))) ]
i

0o
TF,J => " Kij« Fi(0r,) + zk: Rijk Fi(0F ) [Tla + Ji Ty (1 + [Ta)
K

Credit: Pattison et al 2025
Inference reduces to matrix multiplications + vector operations.
= |deally suited to the SIMD/SIMT architecture of modern GPUs.
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High-Dimensional Inference

Typical analyses involve 30—80 parameters:

» ~ 7 astrophysical » ~ 2 horizon
» ~ 15-65 foreground » ~ 1-3 noise

= millions of likelihood calls, ~1-20 hours per run on CPUs.

Using:
- Chromatic functions K;; «, R x, Ji: (encode beam + instrument response)
- Nenral netwark emiuilatar T-(1, A-) (fact 21-cm cinnal nenearatinn)

To allow wider time ranges and higher-dim models:
Our pipelines must move to GPU-accelerated inference.

Inference reauces o matrmxX multiplications + vector operations:
= |deally suited to the SIMD/SIMT architecture of modern GPUs.
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Modern Computational Architecture

CPU Architecture

Few powerful cores (10s)
Complex control logic
Optimised for sequential workloads

Large caches, low latency

High Clock Speed (3-5 GHz)

vV V. Vv Yy

GPU Architecture

Thousands of lightweight cores
Massive parallelism (SIMT)
High memory bandwidth

EEEEEE
vV v v VY

Excel at batched vectorised operations

Lower Clock Speed (1-2 GHz)

Image Credit: AMD
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An Introduction to JAX

High-performance
numerical-computing
and large-scale
machine learning
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An Introduction to JAX

Automatic Differentiation

of
y / (VH(x)i = 3_X(X) — jax.grad(f) (x)
1

High-performance For more details on Autodiff/Dual Numbers see
numerical-computing © JacobTutt/dual_autodiff_package

and large-scale

machine learning

INIVERSITY OF | cayendish Laboratory

MBRIDGE Department of Physics ) JacobTutt


https://github.com/JacobTutt/dual_autodiff_package
https://github.com/JacobTutt

An Introduction to JAX

" Automatic Differentiation

/A
of
"'A" (vf)(x)iza(x) — jax.grad(f) (x)
I

High-performance For more details on Autodiff/Dual Numbers see
numerical-computing © JacobTutt/dual_autodiff_package

and large-scale XLA Compilation

machine learning
» Transforms functions into optimised machine code

» Provides python flexibility alongside compiled language
preformance

f(x) = jax.jit(f)(x)
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An Introduction to JAX

" Automatic Differentiation

/A
of
"'A" (vf)(x)iza(x) — jax.grad(f) (x)
I

High-performance For more details on Autodiff/Dual Numbers see
numerical-computing © JacobTutt/dual_autodiff_package

and large-scale XLA Compilation

machine learning
» Transforms functions into optimised machine code

» Provides python flexibility alongside compiled language
preformance

f(x) = jax.jit(f)(x)

Automatic Vectorisation and Parallelisation
> jax.vmap: automatic vectorisation over batches of data

> jax.pmap: parallel execution across multiple XLA devices
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Benchmarking Performance Increases

Data/ Chromaticity Function Generation

1. Foreground model
Build Ty (€2, v) with base + spectral index maps (power-law scaling around vy).

2. Galactic Transforms
Transform maps from Galactic to Local (AltAz) frames

3. Lunar / horizon environment
Inject lunar emission and horizon + soil emission/reflection model.

4. Antenna convolution
Apply chromatic antenna pattern A(v, ), and average over the sky: Tant (v, t).

5. Time reduction
Optionally collapse time dimension (Averaged vs Separated).

6. Noise model
Add instrumental noise using the selected model (Gaussian, radiometric, etc.).

7. 21-cm signal injection
Add the cosmological global signal model T,1(v).
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Benchmarking Performance Increases

Data Generation Pipeline
» Computed for 13 time intervals

16
11

Configuration  Old (s) New (s) 514 10§
Ave No Horizon 661 50 £ 2
Ave Horizon 655 50 Zn 8
Sep No Horizon 725 52 & 8 2
Sep Horizon 813 53 10 S °
* Old pipeline - 40-core CPU node (£0.40/hr) & & Y &
* New pipeline - NVIDIA A100 GPU(£0.55/hr) S 4@‘*"’{1«@“ Q,?;b‘;;\,@‘ &q,%oo

?\& o“)’o Pd 5;0‘3‘ Fe

Key Takeaway: Speed up of up to 15X
(11X Financial Saving)
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Benchmarking Performance Increases

Chromaticity Function Generation
» Computed for 13 time intervals and 35 regions

40 30
Configuration Old(s) New(s) s 25 §
Ave No Horizon 328 51 £ 08
Ave Horizon 406 52 = 153
Sep No Horizon 1474 53 & 03
Sep Horizon 2326 54 10 ;
*Old p/pe/ir?e - 40-core CPU node (£0.40/hr) & S 5 &
* New pipeline - NVIDIA A100 GPU(£0.55/hr) ?:‘zg\é{@oo ?ﬁgzt&\ 56‘?%{&00 %E?;;\ >
w° o

Key Takeaway: Speed up of up to 43X
(31X Financial Saving)
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Benchmarking Performance Increases

Data / Chromaticity Function Generation

Pipeline Stage Run Time
Initialising/ Loading Data ~ O(24s)
Galactic Transforms (CPU) ~ O(265s)

Spectral Index Broadcasting

Sky Map Interpolation

Lunar / Horizon Injection

Antenna Convolution ~ 0(0.755)
Time Averaging

Noise Model

21-cm Signal Injection

NIVERSITY OF | cavendish Laboratory
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Benchmarking Performance Increases

Individual Likelihood Call
» Computed for 13 time intervals and 35 regions

[

Configuration  Old(ms) New(ms) 22 5
Ave No Horizon 0.31 0.08 ¢ £
Ave Horizon 0.47 012 =" 10§
Sep No Horizon 1.05 0.08 3y g
Sep Horizon 2.80 013 & s 2

[}

* Averaged Over 1000 Likelihood Calls
* Old pipeline - 40-core CPU node (£0.40/hr)
* New pipeline - NVIDIA A100 GPU(£0.55/hr)

Key Takeaway: Speed up of up to 21X
(15X Financial Saving)
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Traditional Nested Sampling

Nested Sampling provides: Lo Njive = 30, Iteration 1
» Posterior samples A e o Dead point
B 5 0.8 e Replacement
» The Bayesian Evidence 2 ‘
e o
Evidence integral: 0.6 O
< .
/ L£(6) 7(0) d / L& 044 o . e o°
02 @ e
Prior volume (mass): : -
0.0 T T T
&(L) = / 7(0) do = inverse relation: L£(¢&) 0.00 025 050 075 1.00
L(O)>L *o
le—11
Shrinkage of the prior mass: e worst point T
Si=1¢&_1, 6
Expected shrinkage: Ty
1 i 3
E[log t] = — = &~ exp<7 )
Niive ' Nive 5

i—1 i+1
Z = > Ligi1— €)= L - - -
i (& & i '[exP< NI\ve) exP( the>] ° 4x1071 6x107
&
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Traditional Nested Sampling

Nested Sampling provides:
» Posterior samples
» The Bayesian Evidence

Evidence integral:
/ £(6)=(6)d / £

Prior volume (mass):

§(L) = / n(0)d6 = inverse relation: L(g)
L£(0)>L

Shrinkage of the prior mass:

§i=1t¢&_1,

i
= &~ exp<7 )
Nive

Expected shrinkage:

4
Ellog t] = — N

live

i—1 i1
Z = > Li(gi—1— &)= Zﬁi[eXP(—l ) —eXP<—I
i i Nive N

Cavendish Laboratory

1.0

0.8

0.6
<

0.4

0.2

0.0

Nijive = 30, Iteration 10

Dead point
Replacement o

0.00 025 050 075 1.00

Xo

® worst point

4%x1071 6x107!

&

© JacobTutt
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Traditional Nested Sampling

Nested Sampling provides: Lo Njive = 30, Iteration 35
» Posterior samples « Dead point
. . 0.8 o Replacement
» The Bayesian Evidence 2
Evidence integral: 0.6
<
/ £(6)=(6)d / £ 0.4
0.2
Prior volume (mass):
0.0 T T T
&(L) = / 7(0) do = inverse relation: L£(¢&) 0.00 025 0)'(50 075 1.00
L(0)>L 0
: : . 0.08 P
Shrinkage of the prior mass: e worst point
Si=1¢&_1, 0.06
Expected shrinkage: —
P 9 1 i ¥ 0.04
E[log t] = — = &~ exp<7 )
Niive ' Nive
0.02

i—1 i1
Z =D L1 —E)=) ﬁi[exp<—l ) - exP(—l ) ] 0.00
i i Nl\Ve Nl\Ve

le-01
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Traditional Nested Sampling

Nested Sampling provides: Lo Njive = 30, Iteration 60
» Posterior samples « Dead point
. . 0.8 o Replacement
» The Bayesian Evidence 2 A
Evidence integral: 0.6 U
<
/ L(6)7(0)d / L( 0.4 @
0.2
Prior volume (mass):
0.0 T T T
L) = / (0) do = inverse relation: L£(&) 0.00 025 050 075 1.00
£0)>L Xo
Shrinkage of the prior mass: 04 e worst point

§i=1t¢&_1,

i
== &= exp<7 )
Nive

i—1 i+ 1
zZ = Z Li(€i—1 — &) = Z Ei[eXP(— Ithe ) - eXP<— IN::,e ) ]

Expected shrinkage:

L(g)

4
Ellog t] = — N

live
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Traditional Nested Sampling

Nested Sampling provides: Lo Njive = 30, Iteration 85
» Posterior samples « Dead point
. . 0.8 o Replacement
» The Bayesian Evidence p/w
Evidence integral: 0.6 A
<
/ £(6)=(6)d / £ 0.4 @
0.2
Prior volume (mass):
0.0 T T T
&(L) = / 7(0) do = inverse relation: L£(¢&) 0.00 025 0)'(50 075 100
L(0)>L 0
Shrinkage of the prior mass: ° w-orst point
§i=1t¢&_1, 0.6
Expected shrinkage: @ 04
1 i I
E[log t] = — == &= exp<7 )
Niive ' Nive
0.2
z o~ > e &) => £ 1 dly )
~ (€4 — &) = ilexp| — —exp| — 0.0+
TR — Nive Nive ie 03 Tel02 le-01

3
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Traditional Nested Sampling

Nested Sampling provides: IONHVE =30, Iteration 110
» Posterior samples « Dead point
. . 0.8 e Replacement
» The Bayesian Evidence =
Evidence integral: 0.6
<
/ £(6)=(6)d / £ 0.4 -
0.2
Prior volume (mass):
0.0 T T T
&(L) = / 7(0) do = inverse relation: L£(¢&) 0.00 025 0)'(50 075 100
L(0)>L 0
Shrinkage of the prior mass: 08 .‘ worst point
Si=1¢&_1,
0.6
Expected shrinkage: o
1 i 3
E[log t] = — == &= exp<7 ) 04
Niive ' Nive
0.2

i—1 i+1
Z =~ Li(&i—1 — &) = Li|lexp| — —exp| — 0.0
2,-: (i 2 z,: '[ ( the) ( Mwe>] 1e—-03 1le-02 1le-01
3
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Traditional Nested Sampling

Nested Sampling provides: 1oN”VE =30, Iteration 135
» Posterior samples « Dead point
. . 0.8 o Replacement
» The Bayesian Evidence 2
-
Evidence integral: 0.6
<
/ £(6)=(6)d / £ 0.4
0.2
Prior volume (mass):
0.0 T T T
L) = / (0) do = inverse relation: L£(&) 0.00 025 0)'(50 075 1.00
L(0)>L 0
Shrinkage of the prior mass: ® e worst point
gi=1t¢& 1, 0.8
Expected shrinkage: S 06
1 i =
E[log t] = — = &~ exp<7 ) 0.4
Niive ' Nive
0.2
i—1 i+1
zZ = Li(&i—1 — &)= Lilexp| — —exp| — 0.0
2,.: (€1 = &) z,: '[ ( Nive ) ( Nive ) ] le—03 le—02 1le-01
3
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Traditional Nested Sampling

Nested Sampling provides: IONHVE =30, Iteration 160
» Posterior samples « Dead point
A s 0.8 e Replacement
» The Bayesian Evidence 2 )
Evidence integral: 0.6
<
/ £(6)=(6)d / £ 0.4 &
0.2
Prior volume (mass):
0.0 T T T
0.00 025 050 075 1.00

L) = 9)do i lation: L
(L) /L(e)>LTr( ) d = inverse relation: L£(&) 0

Shrinkage of the prior mass:

§i=1t¢&_1,

i
= &~ exp<7 )
Nive

i—1 i1
zZ = Li(&i—1 — &)= Lilexp| — —exp| — 0.0
Z,.: (€1 = &) z,: '[ ( Nive ) ( Nive )] le—03 1le—02 1le-01

3

e worst point

Expected shrinkage:

L(g)

4
Ellog t] = — N

live

Cavendish Labor.
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Traditional Nested Sampling

Nested Sampling provides: IONHVE =30, Iteration 210
» Posterior samples « Dead point
A s 0.8 e Replacement
» The Bayesian Evidence 2
Evidence integral: 0.6 }@
<
/£ 6)=(6)d / £ 0.4 | o
0.2
Prior volume (mass):
0.0 T T T
0.00 025 050 075 1.00

L) = 0) do i lation: £
(L) /L(G)>L7T( )d = inverse relation: L£(¢&) 0

Shrinkage of the prior mass:

§i=1t¢&_1,

i
= &~ exp<7 )
Nive

i—1 i+1
Z = Z Li(j—1 — &)= Z ﬁi[eXP(— Ithe ) - eXP<— IN:;e ) ]

Expected shrinkage:

L(&)

1
Ellog t] = — N

live

3
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Traditional Nested Sampling

Nested Sampling provides: IONHVE =30, Iteration 260
» Posterior samples « Dead point
. . 0.8 o Replacement
» The Bayesian Evidence 2 @)
Evidence integral: 0.6
<
/ £(6)=(6)d / £ 0.4
0
Prior volume (mass):
0.0 T T T
&(L) = / 7(0) do = inverse relation: L£(¢&) 0.00 025 050 075 1.00
L£(0)>L Xo
Shrinkage of the prior mass: 1.0 ® . worst point

Si=1¢&_1, 0.8
Expected shrinkage: , ) o 06
i W
Hllog =~ Nive = G exP(* NIive) ) 04
0.2
i—1 i+1
= Zl: ileim e = z:: Ei[e’(p<_ Nive ) B eXp<_ Nive ) ] 0.0 le—03 1e—02 1le-01

3

Cavendish Labor.
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Accelerated Nested Sampling

Traditional nested sampling (serial): Nive = 30, Iteration 1

. . . . . 10
» Remove one ‘worst’ live point each iteration. £ .« Dead point
» New point conditioned on: 0.8 +  Replacement |
. oll@
L > Lin 0.6 o @
@ .
. . L]
> Inherently sequential MCMC slice samples 041 ® @ o ¢
» PolyChord - Handley et al 2025 02 °
° L
0.0 -
. 0.00 025 050 0.75 1.00
Accelerated nested sampling (parallel): Xo

> Discard a batch of nge ‘worst’ points.
»> All replacements conditioned on:
[/(0) > Lmin Cmin = max{£1 Sy ‘C"del} 0.8

Niive = 30, lteration 1
-

e - Dead points
® Replacements

1.0

0.6
» Sample each replacement independently <
= vectorised (vmap) across GPU 04

> Blackjax 02

> Cabezas at al 2024, Yallup et al 2025 0.0010 07 04 o6 o8 1o

OF | cavendish Laboratory
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Accelerated Nested Sampling

Traditional nested sampling (serial):

» Remove one ‘worst’ live point each iteration. 1.0 Mive =30, Iteration 2
. . . o Dead points
> New point conditioned on: 08 o  Replacements
L > Lonin @)

0.6

. ) <
» Inherently sequential MCMC slice samples 0.4
» PolyChord - Handley et al 2025 02

0.0
. 00 02 04 06 08 1.0
Accelerated nested sampling (parallel): Xo

» Discard a batch of nge ‘worst’ points. Nive = 30, Iteration 3
» All replacements conditioned on: e Dead points
0.8 ® Replacements
L(0) > Lmin  Lmin = max{Lq,...,Lnyy}

(|

1.0

0.6 o o
» Sample each replacement independently % 04
= vectorised (vmap) across GPU
0.2
» Blackjax
> Cabezas at al 2024, Yallup et al 2025 %% 02 04 06 08 10

X0

Y OF ' cavendish Laboratory © JacobTutt
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Benchmarking Nested Sampling

Time Separated Horizon Model Fits

. . Old Time New Time Speed Price
Configuration . .
(Hr:Min:Sec) (Min:Sec) Factor Factor
15 Reg (19 Param) 12:00:00* 00:00:49 881* 641*
20 Reg (24 Param) 12:00:00* 00:02:00 360" 262*
35 Reg (39 Param) 12:00:00* 00:20:32 35 26*

* CSD3 timed out prior to completion of fitting - thus lower limits
NS Parameter Scaling

1200 _ 9(N3) scaling "

[
o
s}
S}

800

600

400

Runtime (seconds)
-

200

20 25 30 35 40
Number of Parameters
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Signal Recovery

fo,21

o
%

©

fo.21 o An *
Time-Separated, Gaussian Signal, 20 Region, No Horizon
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Future of REACH Pipeline?

Accelerated Forward Model:

Tons(v) = T21(v) + Tec(v) + o(v)

Configuration = New (ms)
Ave No Horizon 0.59

Ave Horizon 0.63
Sep No Horizon 0.61
Sep Horizon 0.59

* Averaged over 1000 forward model calls
*Run on an NVIDIA A100 GPU (£0.55/hr)
* Gaussian signal and noise structure

Note: An order of magnitude faster without noise addition.
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Future of REACH Pipeline?

Accelerated Forward Model:

Tons(v) = T21(v) + Tec(v) + o(v)

Configuration = New (ms)
Ave No Horizon 0.59

Ave Horizon 0.63
Sep No Horizon 0.61
Sep Horizon 0.59

* Averaged over 1000 forward model calls
*Run on an NVIDIA A100 GPU (£0.55/hr)
* Gaussian signal and noise structure

Note: An order of magnitude faster without noise addition.

Future of REACH Simulations

» XLA compilation and full vectorisation / parallelisation allows:
©(10°) simulations per second
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Future of REACH Pipeline?

Simulation Based Inference

As we begin to consider more parameterisations of our system
» eg. Parameterised/ Emulated Beam Pattern (+4/5)
» Saxena et al 2024 - TMNRE

1o* T

1wk & i
& Parameter reduction
1wt F & — E

la.ﬂ -
i Simulation-based inference
107 F 1

Number of simulations

Emulation
-+

1 L L L i L 1
1ot 1o 10* 10* 10 10° Lof 107 10°
Number of model parameters

Boddy et al 2022

UNIVERSITY OF | cayendish Laboratory

CAMBRIDGE ' pepartment of Physics \ S © JacobTutt


https://github.com/JacobTutt

Questions

Thank you for your attention!
Jacob Tutt
Department of Physics, University of Cambridge
jlt67Q@cam.ac.uk
) REACH-telescope/REACH _data_analysis_gpu
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An Introduction to JAX

Automatic Differentiation

Provides ‘free’ exact derivatives of numerical at
machine precision by systematically applying the
chain rule. f

(x) = jax.grad(f)(x)
i

V' /'V / /4

™

High-performance (Vf)(x),- =
numerical-computing X)
and large-scale

machine learning

For more details on Autodiff/Dual Numbers see
© JacobTutt/dual_autodiff_package

Gradient-based Optimisation | Hamiltonian Monte Carlo/ NUTS

JAX computes gradients of a loss function: ~ EXploits gradients of theflog—posterior to
accelerate exploration of parameter space:
Vo £(8) = jax.grad(L)(6) P P P

, . . , Vg logp(6 | D)
Exploited during ML training’s gradient
descent loops using Optax’s optimisers BlackJAX enables efficient sampler
(e.g. Adam): implementations (eg via Leapfrog Integration).
my - rys 7 1 {E
Orpt = 0 — 4 ; , >,
t+1 t « \/Vt—‘,- . @" D (P q) — (p q ) {;f}
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An Introduction to JAX

~ XLA Compilation
4

Transforms functions into optimised machine code:

y
V /Y )/ A
Y / /7

» Inputs are wrapped in tracers

High-performance » JAX operation mapped to a computation graph (intermediate).

numerical-computing  » jaxpr then device-dependently XLA compiled
and large-scale

machine learning fx) = Jax.jit(f)(x)

Python + Compiled Speed

» Ahead-of-time compilation to » Python - slow interpreted language.
machine code

Compiled Languages

» Produces near-C++ speeds

> Static typing and memory layout » Supports GPUs with little code changes

» Highly optimised loops / vectorisation

Pros: low-level control, maximum hardware JAX provides Python’s flexibility with
efficiency. compiled-language performance.
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An Introduction to JAX

Automatic Vectorisation and Parallelisation

> jax.vmap: automatic vectorisation over batches of data
> Deals with batches inside primitive operations
High-performance > jax.pmap: parallel execution across multiple XLA devices

numerical-computing
and large-scale

machine learning f(x) = vmap(f)(X) f(x) = pmap(f)(X)

From Loops to Vectorisation CPU to GPU Parallelism

Old way (NumPy/Python): Old way (MP!/ multi-CPU):

> True hardware-level parallelism (SPMD)

outputs = []
for i in range(N):
outputs.append (f (xs[i]))

New way (JAX): New way (JAX):
vmap(f)(x1.n) pmap(f)(Xdevices)

with ProcessPoolExecutor() as ex:
results = list(ex.map(f, xs))
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