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1 Introduction

Although predicted by Einstein in 1916, the first direct detection of gravitational waves (GWs) from
the binary black hole merger GW150914 [1] wasn’t achieved until a century later. However, such
detections have become increasingly routine, with over 2900 GW events [2] having been observed
as of 19th March 2025. This work looks at some of the key statistical techniques used during GW
analysis for rapid signal detection and sky localisation, which are essential for allowing follow-up
observations to be made in the era of multi-messenger astronomy. First achieved for GW170817
[3], complementary electromagnetic (EM) observations allow phenomena such as kilonovae [4] to
be studied for mergers involving neutron stars. Additionally, GWs serve as ‘standard sirens’
[5], offering an independent measurement of the distance-redshift relation, which can be used to
constrain cosmological parameters.

2 Data

2.1 Interferometers

Modern interferometers use interference patterns to measure changes AL(t) in the distance traveled
by lasers along two perpendicular arms of length L, caused by wave-like distortions in the geometry
of space-time. This is quantified by the strain, h(¢):

AL(t)

h(t) = — (1)
The following work makes use of data provided by three laser interferometers: Hanford (H1), Liv-
ingston (L1), and Virgo (V1). The Hanford and Livingston detectors form the LIGO observatory
[6] and have arms 4 km in length. As a result, they typically exhibit lower strain noise and thus
achieve a higher signal-to-noise ratio (SNR) compared to Virgo, which has 3 km arms [7]. Con-
sequently, H1 and L1 serve as the primary detectors in this analysis. This is evidenced by their
systematically lower power spectral density (S, (f)), as shown in Figure 1, a measure of the mean
square noise fluctuations per frequency bin (assuming Gaussian, stationary noise):

A () = 551 — ) )

That said, a detector’s sensitivity to the GW’s plus (h) and cross (hy) polarizations also
depends on its geographic position and orientation relative to the source, quantified by the antenna
patterns (F/Fy). Consequently, Virgo’s location in Italy offers complementary sky coverage,
improving sensitivity to regions that both US-based detectors lack, as illustrated in Figure 2.
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Figure 1: Amplitude Spectral Density and whitened strain data for each detector. Following
common practise, values below 20 Hz are set to infinity.

H1 Antenna Response L1 Antenna Response V1 Antenna Response X
y=0 y=0 w
+
0.8 |+
w
g
P 0.6 %
1]
£ g
g o §
R}
A &
0.2 g
75 — ol - : - © 8
Right Ascension Right Ascension Right Ascension 00 g

Figure 2: Antenna response functions for each detector at the GPS start time of the data

2.2 Waveform Model

During real-world GW analysis, the nature of the source and thus its true waveform is unknown.
As a result, even for the simplest case of GWs emitted by a binary black hole (BBH) system in
a circular orbit, a 15-dimensional parameter space is required to perform inference based on an
interferometer’s signal, h(t, Oppn).

Oppn = {m1,ma, 51,85, D, 0, 8, 1,0, 1., dc} (4)

e Waveform parameters: masses my, mo, spin vectors Sy, So, inclination ¢ and coalescence
phase ¢..

e Detection parameters: luminosity distance D, right ascension «, declination ¢, polariza-
tion angle ¥ and time of coalescence ..

In the following analysis, we assume a fixed waveform model throughout, h(¢, @req), displayed in
Figure 3, and thus our parameter space is reduced to the five detection parameters, Ogoq. The
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Figure 3: Fixed Waveform model in both time and frequnency domain with a time from ¢, = 0
— 3.75 to aid visualisation.



time-domain waveform shows the inspiral, merger, and a rapid ringdown pattern characteristic of
a GW.

eRed = {DL7057671/J7tC} (5)

3 Match Filtering

Matched filtering is a commonly employed signal processing technique for identifying gravitational
wave events within the detector’s noisy time series data. Although a detailed derivation of the
methods is provided in Notebook 0, a brief overview is given below.

3.1 Mathematical Formulation

For a given waveform template, an ‘optimal filter’, K(t), can be defined and cross-correlated with
the interferometer output: s(t) = n(t) + h(t), which contains both noise n(t) and a potential event
signal h(t). This filter must be applied for all coalescence times t., effectively acting as a template
that slides back and forth, forming a convolution:

2 0o
arlte) = 3z = (S*K)(t) = [ dtSOK(-1) (6)

— 00

Using Parseval’s theorem (Equation 7) and the translation property of the Fourier transform
(Equation 8), this can be converted to the frequency domain:

[ aswrew- | T AR (7)

FIK(— t))(f) = R(f)e e (®)
pette) = [ T a3 R ()i (9)

Using the optimal filter which weights each frequency by the inverse of the spectral noise density
(as proved in the repository) and the fact the time series is real.

O ((0))
KD =350 (10)
p2s(te) = 4R /O°° of Wesztp 12)

Finally by writing this an inverse Fourier transform:

5(f)R*(f)
5 ] (te) (13)

In practise, this was implemented on the discrete data using the inverse fast Fourier transform
(IFFT).

p?nf(tc) = 4RF! [

3.2 Time Isolation Results

Although important to consider the Hanford and Livingston detectors independently from Virgo,
due to the discussion provided in subsection 2.1, the results for each detector are presented together.
Despite using a fixed waveform model, the interferometers’ detections are not fixed due to their
dependence on the antenna patterns (F; and F ), and thus on the source’s RA, Dec, and ¥. These
functions simply scale the plus and cross polarisations of the waveform and thus should not affect
the inferred coalescence times t.. However, they will directly affect the observed signal amplitude
and thus the detection SNR.

To investigate this effect, matched filtering was performed using a set of antenna response
functions generated from a mesh grid of evenly distributed RA, Dec, and v values, with 100, 50,



Table 1: Standard deviations of SNR and ¢, across grid of RA, Dec, and 1, with parameters that
maximise the SNR for each detector.

Detector osnr  0t, (s) RA (rad) Dec (rad) < (rad)
Hanford (H1) 5.329  0.001 0.381 0.796 1.988
Livingston (L1) 4.563  0.001 3.998 -0.535 2.885
Virgo (V1) 3.491  0.001 5.775 -0.739 2.372

Table 2: Maximum matched filter SNR, and corresponding detection time.

Detector Max SNR  Time (s)

Hanford (H1) 35.52 2.017 £+ 0.002
Livingston (L1) 30.48 2.009 £ 0.002
Virgo (V1) 23.28 2.008 £ 0.002

and 50 samples respectively. The results of this optimisation are presented in Table 1, which show
that there is negligible effect on the achieved ¢, values over the grid, yet significant variation is seen
across the SNR values. Despite this, we see no agreement between the ‘optimal’ sky coordinates
and polarisations, highlighting the limitations of this approach and supporting the use of more
advanced techniques such as triangulation and Bayesian inference throughout this work.

Using the ‘optimal’ matched filters from above, Table 2 and Figure 6 report the maximal SNR
achieved for each detector alongside their corresponding coalescence times ¢. and uncertainties,
estimated via a simple full-width at half-maximum (FWHM) approximation. As expected, given
the discussion in subsection 2.1, we find that the SNR achieved by Virgo is significantly lower than
both Hanford (34.5%) and Livingston (23.62%).
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Figure 4: Matched filtering performed on strain data from the Hanford, Livingston, and Virgo
detectors.

3.3 Sky Triangulation

Similarly to radio interferometry, the long baselines and the known propagation speed of GWs
(speed of light, c¢), enable time delays between detectors to be used to constrain the source’s
location on the sky. Unlike electromagnetic waves, gravitational waves are not impeded by the
Earth and hence can be detected from all directions (excluding sensitivity variations from the



Total Light

Detector Pair Travel Time (ms)

Time Delay (ms)

H1-L1 7T+£3 10
H1-V1 8£3 27
L1-V1 0.1£3.0 26

Table 3: Absolute Time Delays between Interferometers alongside the distant between detectors
in light travel time for context.[9].

Detectors | 10 Area [deg?] (% Sky) | 20 Area [deg?] (% Sky) | 30 Area [deg?] (% Sky)
HI- L1 15671 (38.0) 20895 (50.7) 26468 (64.2)
H1- V1 7144 (17.3) 12247 (20.7) 18075 (43.8)
Li-Vi 9857 (23.9) 15846 (38.4) 21378 (51.8)
H1-L1-VI 1611 (3.9) 3733 (9.1) 6339 (15.4)

Table 4: Confidence levels and sky areas for different detector log-likelihood combinations.

antenna pattern). This work exploits the Bilby package [8], which stores the precise position and
orientation for each detector. Using these, the time_delay_from_geocenter function computes the
expected time delay from the Earth’s geocenter to a detector as a function of source sky position,
7i(r, §). For any pair of detectors, the theoretical time delay between detectors is given by:

At3(a, 0) = 71 (e, 8) — (e, 9).

These theoretical time delays can then be compared to the observed delays between detectors,
defined as Ati,bzs = t; — tg, as presented in Table 3. To determine confidence intervals, we use a

(14)

gaussian timing likelihood for each detector, which means that for a given pair of detectors:

1 (Atg}); -

log £172(Oé7 5) X 75

2
Attrue 5
1,2 (a, )) (15)

01,2

And thus for more than two detectors, the likelihood across all baselines can be summed using;:

2
AP — Attme (o,
1,7 7,7 (Oé )) (16)

1
log L£(a, d) —3 Z ( P

i<j

The log-likelihood values were calculated across the sky using a grid of RA and Dec Values.
Given the assumption of normal distributed errors, the log-likelihood ratio statistic defined in
Equation 17 will follow a Chi-Squared x? Distribution with 2 degrees of freedom, in line with
Wilk’s Theorem. Confidence contours could therefore be drawn using the cumulative density
thresholds of the x? distribution. These contours are presented on sky maps in Figure 5 for each
combination of detectors. Table 4 presents estimates of the sky area contained within each contour
which were calculated using equal area Healpy pixels [10] (nside = 16 — npix = 3072).

A= —-2log (M)

We begin by discussing the results obtained using only the .1 and H1 detectors independently.
Using just two detectors only provides a single baseline (generalised for N detectors in Equation 18),
resulting in weak sky localisation power. In this case, we are only able to constrain the source’s
location to 38.0% of the sky with 68% (10) confidence. Such a broad area is completely infeasible
for enabling follow-up EM observations in multi-messenger astronomy or, of more relevance to this
work, host galaxy identification. We note that this sky area could be reduced by decreasing the
uncertainty in our timing measurements, which are likely conservatively estimated in our analysis.

(17)

N N(N -1
No. Baselines = = NN=1) (18)
2 2

With the inclusion of the Virgo interferometer (V1), three independent baselines can be cre-
ated, significantly increasing our ability to localise a source. Interestingly, even when considering
the individual time delays involving Virgo, namely H1-V1 and LL1-V1, they both provide substan-

tially smaller areas than those from H1-L1. This improvement is a result of Virgo’s location in
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Figure 5: Sky maps showing the 1o, 20, and 30 confidence contours of source triangulation using
time delays.

Europe providing longer baselines with the U.S.-based detectors. This is supported by the inverse
correlation between the sky localisation area (Table 4) and the baseline length [9] (Table 3).

Finally, when considering all three baselines together (Equation 16), we are able to isolate an
area on the sky of 1611 deg? (3.9%) with 68% confidence. This marks an 89.7% decrease from the
results provided using just the H1 and L1 detectors. Although still too large to provide an estimate
of an exact host galaxy, this could be further reduced by decreasing the timing uncertainties or
incorporating additional detectors such as KAGRA [11], GEO600 [12], or the upcoming LIGO-India
[13].

4 Bayesian Inference

In the following section, we apply a Bayesian methodology to explore the posterior distribution of
the five-dimensional ‘observational’ parameter space outlined in subsection 2.2.

4.1 Likelihood

We first outline the formulation of the likelihood function this analysis employs, the basis of which
assumes that the noise in the time domain is stationary and Gaussian. Consequently, under a
noise-only model H,uise, the likelihood can be formulated as:

N
,C(TL | Hnoise) = gﬁ(ﬁ(fz) ‘ Hnoise) = Nexp <_ (nén)> (19)
where the inner product is defined using the PSD S,,(f) given in Equation 2:
(alb) = 4% / af WA _ A p wa (20)
Sa(f) 2 T5.(0)

Thus assuming a signal is present with a detector response hz(t) the likelihood can be written as:

—

L(dﬂ ) = P(d | JaHsignal) = P(d h ‘ Hnoise) (21)

N g 7 2
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The formulation above assumes a single detector, however can be generalised for multiple detectors,
{dz} et as such:

P({dz} | ) = [Pz | 9) x exp (— o ety h”) (24)
v

T
Naet Ny—1 dz(f;) 7~ﬂ )2
log L({dz} | 6) o —2Af Y 1 ) izt @ Yoz (25)
I=1 =0 S (fz)

For a fixed waveform (Figure 3), we must account for the parameters RA, Dec, 1, D;, and ¢°°.
The first of these are accounted for by each detector’s antenna patterns, as previously discussed.
For Fy and Fy, we assume that time can be treated as constant at the GPS start time, as its
variation has a negligible effect over the 4-second signal.

haet(f) = Fi(RA, Dec,¥)) ho(f) + Fu (RA, Dec, ) hy (f) (26)

To ensure a consistent definition of time, all detector waveforms are defined relative to the time
of coalescence at the Earth’s geocenter, t5°°. The corresponding time delays to each detector are
then applied prior to performing the Fourier transform:

tgete(:tor = 8% + tdgt:;;tor(Ra Dec) -
haet (tgeo) L iLdet@QTriftSetSCtor (28)

Finally, the effect of the luminosity distance Dy, is incorporated through its inverse proportionality
to the observed gravitational wave amplitude:

~ 1Gpc
hdct(f; DL) = hdct(f) (29)
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Figure 6: The effects of scaling (D;) and shifting (¢2°°) on the waveform’s time and frequency
domains.

4.2 Priors

The priors presented in Table 5 were chosen to be uninformative to provide an unbiased analysis
and thereby allow a direct and fair comparison of results presented in section 3. While the uniform
priors for right ascension, polarization angle (¢), and the coalescence time at the geocenter (tgco)
are straightforward, we provide further justification for the choices made for the luminosity distance
D; and declination. To remain uninformative about the source’s position on the celestial sphere,
the prior must assign equal probability per unit area on the sky. This requires accounting for the
geometric convergence near the celestial poles at Dec = 7. To achieve this, we sample sin(Dec)
uniformly over the interval [—1, 1]. Secondly, we use a Jeffreys prior on the luminosity distance to
allow scale invariance and better reflect the lack of knowledge of its order of magnitude.



Parameter | Prior Description

RA Uniform over [0, 27]

Dec Uniform in solid angle: sin(Dec) € [—1, 1]

P Uniform over [0, 7]

toeo Uniform over [0, 4] seconds

D, Log-uniform over [1072,100] Gpc (i.e. 10 Mpc to 100 Gpc)

Table 5: Prior distributions of waveform parameters.

4.3 Nested Sampling

This work employed the dynesty nested sampling package [14] to perform stochastic sampling from
the posterior, defined by the likelihood function and prior distribution derived earlier. Dynesty
offers multiple nested sampling strategies through configurable parameters such as bound, which
controls how the sampling region is defined and sample, which dictates how new live points are
drawn.

Depending on the complexity of the posterior, these parameters can significantly affect the
computational efficiency of the sampling. As a result, an initial optimisation was run using 500
live points and a dlogz of 0.1 to compare the runtimes and sampling efficiency over a grid of
parameters. While the full results are provided in the associated repository, it was found that using
multiple bounding ellipsoids (bound=‘multi’) and a random walk sampler (sample=‘rwalk’) was
optimal. Given this, complete posterior runs were made using 3000 live points and a termination
condition of dlogz = 0.01.

These analyses were performed for two likelihood configurations: firstly, using only the data
from the Hanford (H1) and Livingston (L1) detectors, and secondly, incorporating the Virgo (V1)
detector to leverage all three interferometers. The main results from both configurations are
presented below. Full corner plots showing the posterior distributions for all five parameters in
each case are provided in section 6 (Figure 11 and Figure 12). Additionally, Figure 13 presents
a comparison of the convergence and resulting parameter distributions from the nested sampling
runs.

4.4 Tabulated Results

The first notable observation when comparing the two posterior distributions is that all parameter
estimates remain consistent between the two approaches. This is evidenced by every median value
reported in Table 7 falling within the 68% (1c0) credible interval presented in Table 6. Additionally,
when incorporating data from all three detectors, far better parameter constraints are achieved,
with a ~74% reduction in all parameter uncertainties presented in Table 7. Finally, once the
expected time delay has been accounted for, the estimates of t&ge") align with those presented in
section 3, further validating the Bayesian approach.

4.5 Sky Localisation

Figure 7 shows the posterior sample distributions projected onto sky maps, with the corresponding
time-delay confidence regions from section 3 shown for reference. The comparison shows that the
Bayesian posteriors are entirely consistent with the results from section 3, but significantly more
constrained. This improvement was quantified using HEALPix pixels and KDE density thresholds
to calculate the sky area contained within each confidence contour, as presented in Table 8. Using

Parameter Median 68% 90% 99%
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Table 6: Posterior estimates and credible intervals from the H1 and L1 detectors.



Parameter Median

68% 90% 99%

RA 2.3217
Dec -1.1952
" 2.6797
¢{8e°) 2.0004
Dy 1.0144

+0.0261 +0.0441 +0.0693
—0.0251 —0.0414 —0.0650

+0.0103 +0.0173 +0.0273
—0.0101 —0.0167 —0.0256

+0.0364 +0.0601 +0.0950
—0.0371 —0.0623 —0.0963

+0.0002 +0.0003 +0.0005
—0.0002 —0.0003 —0.0004

+0.0345 +0.0602 +0.0973
—0.0333 —0.0536 —0.0812

Table 7: Posterior estimates and credible intervals from the H1, L1, and V1 detectors.

Detectors | 10 Area [deg?] (% Sky) | 20 Area [deg?] (% Sky) | 30 Area [deg?] (% Sky)
HI- LI 60.43 (0.15) 168.70 (0.41) 334.04 (0.81)
HI-L1- VI 0.00 (0.00) .20 (0.01) 755 (0.02)

Table 8: Sky localization areas at the 1, 2, and 30 confidence levels of the posterior samples from
the H1-L1 and H1-L1-V1 detector likelihoods.

only the H1 and L1 detectors, the Bayesian method isolates just 0.15% of the sky with 68%
confidence, down from 38% using the single-baseline time-delay approach. When incorporating all
three detectors (H1, L1, and V1), the posterior becomes so tightly constrained (~ 1 deg? / 0.002%
of the sky) that, even using a HEALPix resolution of nside = 64 (49,152 pixels), we are unable
to identify a pixel entirely within the contour. This is contrasted with the 1o region of 1611 deg?
obtained using all three time delays in section 3, over three orders of magnitude larger. Overall,
the Bayesian approach provides significantly better localisation than simple triangulation, greatly
increasing the chances of accurate host galaxy identification and subsequent cosmological inference.
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Figure 7: Comparison of posterior sample distributions on the sky (RA, Dec) for the H1-L1 and
H1-L1-V1 detector configurations.




4.6 Luminosity Distance, D,

Figure 8 and Table 7 show a similar trend in the posterior distribution of the luminosity distance,
Dy, across the two analyses. The inclusion of an additional interferometer (Virgo) allows a tighter
constraint on Dy and also shifts the median estimate closer to the true value of 1 Gpe. In
downstream analysis, this enables greater accuracy in the inferred distance scale and, consequently,
allows cosmological parameters to be inferred more precisely in section 5.
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Figure 8: The luminosity distance, Dy, distribution for the H1-L.1 and H1-L1-V1 detector
posteriors.

5 Cosmological Inference

The following section explores the use of gravitational waves as ‘standard sirens’. It focuses on
the idea that by identifying the GW event’s host galaxy, the distance-redshift relation can be
determined and hence Hubble’s constant Hy inferred.

5.1 Host Galaxy Identification

The 90% confidence regions for both posterior estimates were determined using credible thresholds
from a kernel density estimation (KDE) over a grid of right ascension (RA) and declination (Dec)
values. As shown in Figure 9, for both the two-detector (H1-L1) and three-detector (H1-L1-V1)
configurations, only a single galaxy (MGC+JN7U119) lies within their respective 90% confidence
region. However, we still note that the three-detector posterior (right) provides a much stronger
isolation of this host galaxy, with even its 100% confidence contour isolating MGC+JN7U119. In
contrast, for the two-detector posterior (left), three additional galaxies lie marginally outside the
90% contour but all fall within the 96.5% confidence region. These galaxies are listed in Table 9.

Name RA Dec Redshift, z
MGC+JN7U119 2.375 -1.211 0.226
MGC+JGS5HZS  2.543 -0.969 0.797
MGC+J0O7TPCIH  2.706 -0.922 1.514
MGC+J2DG22T  1.993 -1.219 1.807

Table 9: Galaxies within the H1-L1 posterior’s 96.5% confidence contour.

5.2 Hubble’s Constant

Assuming the host galaxy to be MGC+JN7U119, as identified in subsection 5.1, the GW source
can be concluded to be at a redshift, z, of 0.226. In the following analysis, we use Hubble’s law
(Equation 30) to relate the luminosity distance, Dy, with redshift, z. Furthermore, given the lack

10
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Figure 9: The 90% confidence contours of the posterior distributions for the H1-L1 and
H1-L1-V1 detector configurations alongside the galaxy catalog.

of correlation between Dy and the spatial parameters (RA and Dec), as shown in Figure 12, it
was not considered necessary to condition the posterior of Dy, on the position of MGC+JN7U119
or to rerun the sampling in a reduced three-dimensional parameter space.

_cz
=D,
It is important to caveat this linear approximation, as it is only valid for low redshifts (z < 1).

For larger redshifts, a more detailed expansion of the co-moving distance, ¢, incorporating the
changing expansion rate H(z), is typically employed.

H, (30)

Dy = (14 2)Sklrem] rom = C/Oz ﬁdz' (31)

For a flat universe, Si[rca] = roam. A second-order Taylor expansion (Equation 32) includes the
deceleration parameter, qo, which incorporates the matter density Q50 and dark energy density
Qa0 [15].

DL%HLO z—i—%(l—qo)zQ—i—-“], QOZ%QM,O_QA,O (32)

Using the samples from the three-detector posterior and Equation 30, we obtain an estimate
for the Hubble constant of Hy = 66.7975 32 km/s/Mpc. There has long been reported statistical
tension between the estimated Hubble constants determined through early-Universe surveys, such
as the Cosmic Microwave Background (CMB), and late-Universe observations. This is outlined in
Table 10. Our gravitational wave based estimate shows consistency with estimates provided by the
Planck CMB results [16], with its reported value of Hy = 67.4 falling within our 1o uncertainty
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0-175 Median: 65.43 km/s/Mpc
i 68% CI: +2.87-3.59
0.150 ! H1, L1 and V1
B’ Median: 66.79 km/s/Mpc
@ 9125} 68% CI: +2.19-2.27
q;:) .
a
? 0.100 |
S 0.075}
Q
e
A 0.050F :
0.025f / ----------- X

0.000

575 600 625 650 675 700 725 750

Hubble Constant Hy [km s~! Mpc™!]

Figure 10: The distribution of the Hubble Constant for both posterior samples assuming
MGC+JN7U119 as host galaxy.
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Method Hy [km/s/Mpc]

Distance ladder (Milky Way Cepheids) 73.24+1.3
HOLiCOW Gravitational lensing 73.3+1.7
Planck CMB 67.4+0.5

Table 10: Hubble constant Hy measurments from different surveys illustrating statistical tensions
[17, 16, 18].

window. However, it does not strongly align with the higher values reported by the local distance
ladder from the Milky Way Cepheids [17] and gravitationally lensed quasars [18].
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6 Additional Figures
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Figure 11: Corner plot of posterior distributions from the H1 and L1 detectors.
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RA = 2.327003
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Figure 12: Top: Corner plot of posterior distributions from the H1, L1 and V1 detectors.
Bottom: Comparison of RA and Dec posterior distributions between the H1-L.1 and H1-L1-V1
detector configurations.
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Figure 13: Convergence plot and posterior distributions of nested sampling runs for both the
(H1-L1) and (H1-L1-V1) detector networks.
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7 Declaration of Use of Autogeneration Tools

This report made use of Large Language Models (LLMs), to assist in the development of the
project. These tools have been employed for assisting:

Formatting plots to enhance presentation quality.

Generating docstrings for the repository’s documentation.

Performing iterative changes to already defined code.

Debugging code and identifying issues in implementation.

Latex formatting for the report.

Identifying spelling and punctuation inconsistencies within the report.

Suggesting more concise phrasing to reduce the word count.
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