

Gaia's Insight to the Milky Way's Hierarchical Assembly

Jacob Tutt¹

¹Department of Physics, University of Cambridge, UK

Galactic Archaeology's Motivation

Credit: ESO/L. Calçada

- Uncovering hierarchical galaxy formation.
- Complements higher redshift galaxy formation surveys.
- Probe the ΛCDM model and dark matter distribution.

Merger Type	Number	Mass Ratio
Minor Mergers	~30	1:3 – 1:100
Major Mergers	~3	>1:3

The 'Big Data Era' with Gaia

Credit: ESA/Gaia/DPAC, A. Moitinho.

- Long hampered by incomplete and insufficient data
- ► Gaia EDR3: Full astrometry for $> 1.4 \times 10^9$ sources (10 TB)
- Complementary surveys: APOGEE, GALAH, WEAVE, 4MOST

Automated Detection of Halo Substructures

Goal:

 Develop methods for detecting stellar substructures from the Galactic halo using the Gaia's Data

Approach:

- Optimising stellar halo (RGB) data selection
- Construct all-sky maps for visual substructure identification
- Developing automated detection algorithms for:
 - Globular clusters
 - Tidal streams
- ► Cross-match structures with APOGEE spectroscopic data

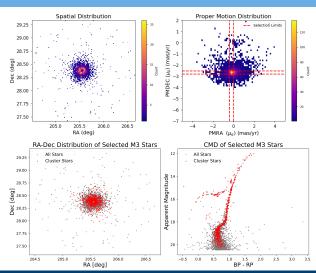
Initial Data Acquisition

Criterion	Cut
Astrometric quality	RUWE < 1.4
Distance cut	Parallax ϖ < 0.1 mas
Galactic latitude	$ b > 10^{\circ}$
Magnitude range	<i>G</i> -band $10 < G < 20.5$
Proper motion cut	$\sqrt{\mu_lpha^2 + \mu_\delta^2} <$ 4 or 12 mas/yr

Optimisation Criteria:

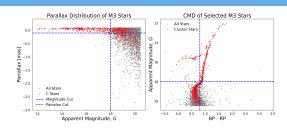
Red Giant Branch (RGB) stars

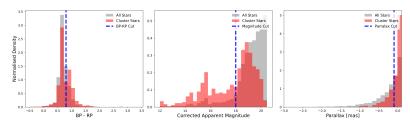
Instead:


▶ 'Isolation purity' of test clusters M3 and NGC 1851.

Extinction corrected using:

Dust Maps: Schlegel, Finkbeiner & Davis (1998) Calibration Coefficients: Casagrande et al. (2021)




M3 Isolation of Cluster Stars

M3 Isolation of Cluster Stars

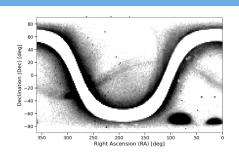
Resultant (Optimised) Cuts

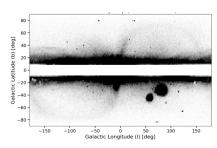
Parameter	Value
BP-RP Cut	0.8
Magnitude Cut	18
Lower Parallax Cut	-0.1

Cut Criteria	Total Stars	Cluster Stars	% Cluster	% Improvement
No Cut	3256	609	18.7%	N/A
Magnitude Cut	410	262	63.9%	45.2%
BP-RP Cut	769	235	30.6%	11.9%
Parallax Cut	1479	431	29.1%	10.4%
All Cuts	305	202	66.2%	47.5%

Additional Investigations

- Surface Gravity
- Effective Temperature
- ► Absolute Magnitude (exploiting Bailer-Jones dist)

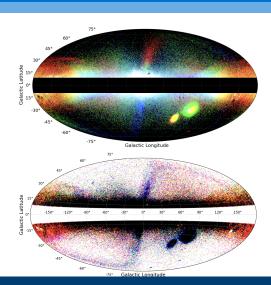

All-Sky Density Maps


Visualisation Techniques:

- Percentile Based Scaling
- Logarithmic Scaling
- Minimum Count Threshold
- ► False Colour Composites
 - Proper Motion
 - Apparent Magnitude

All-Sky Density Maps

Visual Benchmark:


- ► Over-densities: 27 Over densities (+ LMC and SMC)
- ► Tidal Streams: Clear Sagittarius

All-Sky Density Maps

Proper Motion

Absolute Magnitude

Automated Over-Density Detection

Credit: ESA/Hubble & NASA, R. Cohen

Globular Clusters/ Dwarf Galaxies

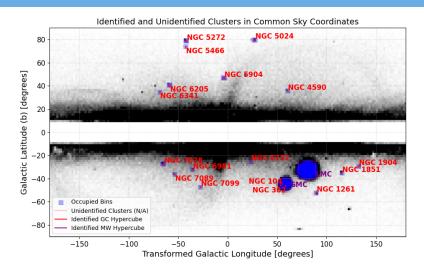
- Localised
- Gravitationally Bound
- Heliocentric Positions

Traditional Methods

- ▶ Circular/Elliptical Projection
- Locally Distributed Perturbations
- Gaussian Mixture Models
 - Extreme Deconvolution (XD)

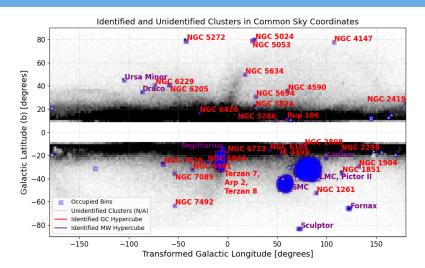
4D Clustering Algorithm

Algorithm:

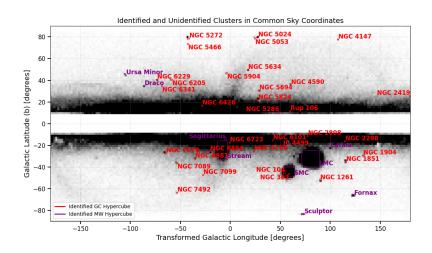

- ► Binning: Data discretised into:
 - 4D: Position and Proper motion
 - ▶ 2D: Position
- Relative Filtering
- Absolute Filtering
- Agglomerative Clustering
 - 4D Adjacency Kernel
- Nested Clusters Removal
- ► HyperCube Definition

Parameters:

- ► Spatial bin width: $\Delta I = \Delta b = 1^{\circ}$
- ► Motion bin width:
 - $\Delta\mu_{lpha}=\Delta\mu_{\delta}=$ 0.65 mas/yr
- Relative threshold: $f_{\text{thresh}} = 0.28$
- ► Absolute count: $N_{\min} = 20$
- ► Connectivity: C = 1

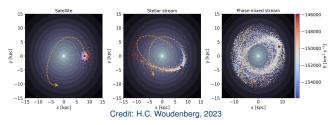


Higher PM Results



Lower PM Results

Overall Results


Stellar Streams

Properties

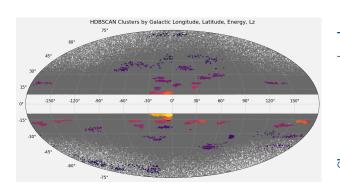
- Formed by tidal disruption
- Dispersed in 6D phase space
- Grouped in conserved quantities

Integral of Motion Space

- ▶ 301,642 stars with 6D data
- ▶ Galpy: L_z and E
- ► Requires:
 - Radial velocity
 - Distance

HDBSCAN

Properties:


- ► No prior assumptions
- ▶ Handle varying densities
- ► Hierarchical nature
- Robustness to noise

HDBSCAN Parameters

Parameter	Function	Value
min_cluster_size	Minimum cluster size	40
min_samples	Core point neighbourhood	15

Integrals of Motion Results

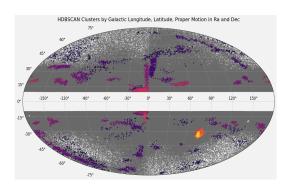
$E - L_z$ Clusters

6 = Acheron-G09

42 = Gaia-8-I21

76 = NGC6397-I21

97 = New-3-124


126 = Sagittarius-A20

135 = Tucana-III-S19

Credit: Mateu 2023, Galstreams

Heliocentric Results

Proper Motion Clusters

5 = ACS-R21

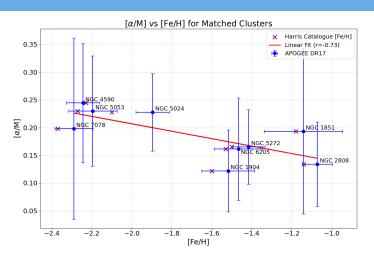
20 = C-5-124

26 = Cetus-Y13

28 = Corvus-M18

65 = Monoceros-R21

103 = New-8-I24


126 = Sagittarius-A20

128 = Scimitar-G17

Credit: Mateu 2023, Galstreams

Metallicities

Conclusions and Future Work

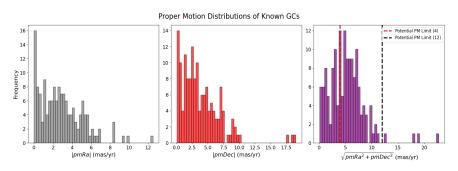
Localised Over-Densities

- Developed a 4D clustering algorithm for compact structures.
- ► Future: Primary data analysis tool in larger research.
 - ► GMM (Extreme Deconvolution)to hypercubes.

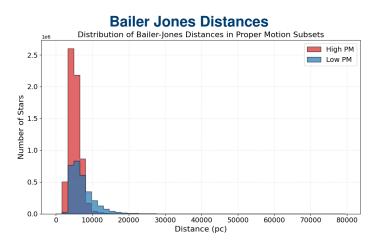
Stellar Streams

- ► Integral of motion space for identifying extended structures.
- Accuracy limited by distance and radial velocity uncertainties.
- Future: use GALAH/APOGEE and chemical abundances for chemo-dynamical tagging.

Thank you for your attention!


Jacob Tutt

Department of Physics, University of Cambridge jlt67@cam.ac.uk https://github.com/jacobtutt


Contextualising Data Preprocessing

Known Globular Clusters in Proper Motion Space (μ_{ℓ} , μ_{b})

Data sources: Vasileiv (2019)

HDBSCAN - Step-by-step:

- 1. Core Distance Calculation:
 - ► For each point *a*, compute its **core distance**:

$$core(a) = distance to the kth nearest neighbor$$

▶ Here, k = min_samples

2. Mutual Reachability Distance:

► For each pair of points *a* and *b*, define:

$$d_{\text{reach}}(a, b) = \max(\text{core}(a), \text{ core}(b), d(a, b))$$

This penalises sparse/outlier points by inflating their distances (density aware).

(Campello et al., 2013; McInnes et al., 2017)

HDBSCAN - Step-by-step:

3 Minimum Spanning Tree (MST):

- ► Build a graph where edges connect all points using d_{reach}
- Construct a minimum spanning tree (MST) using single linkage

4 Hierarchy Construction:

- Progressively remove edges from the MST (starting with longest)
- This creates a hierarchy of clusters at different density levels (dendrogram)

5 Cluster Selection:

- Evaluate stability of clusters (how long they persist across scales)
- Select most stable clusters and label others as noise or border points

(Campello et al., 2013; McInnes et al., 2017)

HDBSCAN vs DBSCAN

- ▶ **DBSCAN** uses a fixed distance threshold (eps) and struggles with clusters of varying densities.
- ► HDBSCAN builds a hierarchy of clusters across all density levels and selects the most **stable** ones, making it more robust to noise and variable-density regions.

Based on McInnes et al. (2017)

