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This paper investigates the gravitational effect of the Sun on the Earth-Moon system through the comparison between the Bi-Circular Restricted
Four Body Problem and the Circular Restricted Three Body Problem. It aims to greater understand the true stability of Lagrange points,
specifically L3, L4 and LS, when perturbing forces are accounted for. It achieves this by firstly studying the changes in the position of the
instantaneous equilibrium points over the *Sun’s orbit’, which for L3, located at [-1.0042802, 0.0000000] LD in the Earth-Moon plane varies
up to 1.815 LD over the orbital period. Additionally, L4/ L5 points located at [0.4874655, +0.8653501] are seen to vary by up to 0.9342 LD.
The paper then goes on to use the Fourth-Order Runge-Kutta method to numerically integrate the equations of motion and model the position
of objects within cis-lunar space over time. It finds the Sun significantly destabilises the Lagrange points, with L3’s stable time frame falling
from 441.13 to 26.06 days and LA/LS, a previously considered ’stable’ point, only remaines in the region for 16.52 days. It goes on to find more
stable positions exist within the system, such as the initial instantaneous equilibrium positions. By using E3(0), [-1.0012284,0.0000000] LD,
as a starting position a body is able to remain within a stable location for 199.75 days and similarly the use of ES(0), [0.2798798, -0.9567248]
LD, results in a maximiun variation of up to 3.1156x10~¢ LD over 100 years.

1. Introduction

Over the last two decades, space-based technology has rapidly
permeated into the civil, commercial and defence sectors, leaving
the developed world ‘dependent on space to provide economic
and social infrastructure’ [1], as well as military reassurances. As
a result, cis-lunar space, which describes the ‘spherical volume
that extends outwards from the Earth’s geosynchronous region to
encapsulate the Moon’s orbit and its Lagrange points’ [2] (L1-L5),
has become increasingly populated. Between the man-made
objects, asteroids and meteors, 18,748 objects are currently being
tracked by the US Air Force’s SST network [3].

There exists a constant drive to reduce the margin of error
within orbital mechanics simulations, not only due to the
increasingly complex environment but the need to design more
advanced missions that span larger time scales. These missions not
only have value in themselves, but additionally ‘play an important
role in enabling and reducing risk for future human missions’ [4]
to deep space destinations such as Near-Earth Asteroids, Mars
or beyond. Of note is NASA’s Artemis Programme, aimed at
establishing a sustainable human presence surrounding the Moon,
including a multi-purpose output, the Lunar Gateway, orbiting
the Earth-Moon L2 point. The programme’s long-term goal is
to pave the way for a crewed mission to Mars [5].

However, within multi-body systems, the equations of motion
governed by gravitational forces quickly become chaotic and lack
closed-form solutions, an issue tackled by scientists for over 300
years. Consequently, models of systems must be restricted and
thus vary from real-world scenarios, for example, the commonly
used ‘three-body problem’ first proposed in 1687 by Newton
[6]. Despite simplifications, modeling gravitational systems still
requires the extensive use of numerical methods, and therefore
calculations often become a compromise between the accuracy
required and the computational resources available. As we enter
an age of high-performance computing and parallel processing,
the advancements in computational capacity will allow higher
fidelity modeling by incorporating additional perturbing factors
and hence increase accuracy.

Within the field, significant attention is devoted to the Lagrange
points, made up of collinear equilibrium points, (L1-L3) as well
as the triangular equilibrium points L4 and L5 [7]. The liberation
points reside where the gravitational and any fictitious forces
balance, demonstrated in Figure 1 by the stationary points of
the effective potential in the Earth-Moon rotational plane. This
warrants particular interest due to their ability to keep objects in
a constant location relative to the Earth and Moon with minimal

station keeping and, therefore economically host a range of
long-term missions. The Earth-Moon system can be shown
to have a sufficient mass ratio (greater than 24.96), such that
the Coriolis force acts as a stabiliser [8] around the triangular
equilibrium points. As a result, no station-keeping is required over
the mission’s lifetime, making them ideal locations to host space
stations and observatories. On the other hand, the Earth-Moon
colinear equilibrium points are, in general, unstable; however, they
offer unique advantages such as L2’s ‘continuous coverage of
the dark side of the Moon for communication with future Moon
bases’ [9]. As a result, there is a significant focus on determining
stable periodic or quasi-period orbits around them.
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FIG. 1: The effective potential
surrounding the rotational plane of the Earth-Moon system defined by the CR3BP.
The Lagrange points (L1-L5) are labeled to show the system’s stationary points

This paper studies the motion of bodies within the Earth-Moon
system (cis-lunar space) and analyses the accuracy of the Circular
Restricted Three Body Problem (CR3BP). This is achieved by
focusing on the effects of incorporating the Sun via the Bi-circular
Restricted 4 Body Problem (BR4BP). The Lagrange points,
especially L3, L4, and L5, are used throughout this paper to
demonstrate the effect of the Sun on the Earth-Moon system
and determine the nature of stable positions within the BR4BP.
Firstly, this is investigated through the position of the equilibrium
points for all orientations of the system by seeking solutions to the
equations of motion. This is extended by determining the stability
of these equilibrium points by mapping the future positions of
bodies forwards in time through numerical integration. Which
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FIG. 2: The two reference frame used to visualise the CR3BP, the inertial frame (left) and the rotational frame of the Earth-Moon System (right)

allows the analysis of whether station keeping is required for
triangular equilibrium points when the Sun is accounted for.

In Section 2, the formulation of CR3BP and the BR4BP and
the Lagrangian mechanics utilised are discussed. The locations
of the instantaneous equilibrium positions over the orientations
of the system are described in Section 3. Section 4 evolves bodies’
motion over time to understand their stability. Finally, Section
5 discusses the limitations of the results and the implications they
have within the field.

2. Lagrangian Mechanics

This paper focuses on the comparison between the CR3BP
and the BR4BP [10], which provide representations of the
Earth-Moon System and the Sun-Earth-Moon System respectively.
The models provide the equations of motions for an additional
body (i.e. a spacecraft) of mass M. within the gravitation
system. Despite their individual characteristics, they both follow
a common set of restrictions. Firstly, the mass of the additional
body is negligible in comparison to that of the primary bodies
(M. << Mgsyn, MEartn, Mproon), and therefore, does not
influence their motion. Secondly, the primary bodies are assumed
to move in circular orbits about their respective barycentres. And
finally, all bodies are taken to lie within the same rotational plane
which this paper thus restricts analysis to.

In this paper, we extensively leverage Legendre’s transform
to convert between reference frames, as outlined in Section 2 A
and Section 2 B. This not only helped visualisation over time
but vitally improved computational efficiency. By altering the
equations of motion, the number of primary bodies varying in
position over time was reduced, and hence so was the volume of
iterated calculations required. To quantify this benefit, a test body
was placed in an arbitrary location in the rotational plane of (0.5,
0.5) Lunar Distances(LLD) and evolved forward in time by 1 year
using Fourth Order Runge Kutta Methods with a step size of 10
seconds, described in Section 4 A. This was performed in both
inertial and rotational reference frames for both the CR3BP and
the BR4BP. The CR3BP in the inertial and rotational frames saw
a processing time of 186 seconds and 134 seconds respectively,
corresponding to a 28% increase in processing speed. Similarly,
the BR4BP saw a decrease in processing time from 219 seconds
to 152 seconds resulting in a 31% increase in processing speed.

Due to the restrictions imposed, the systems evolution only
depends on the masses of the primary bodies and the distances
between them. Throughout this paper, we have taken the mass of
the Sun (Mg,,), Earth (M g4,+1), and Moon (M pz00n) as 1.989 x
10% kg, 5.972 x 10?* kg and 7.348 x 10?2 kg respectively [11].
And the Earth-Moon distance (|7ﬁ>|) and Sun-Earth distance
(IFsca) as 3.847x 108 m and 1.496 x 10! m respectively [11].

A. The Circular Restricted 3 Body Problem (CR3BP)

As shown in Figure 2 (left), the Earth and the Moon are
modelled in circular orbits acting exclusively under each other’s

gravitational field and therefore both rotate around a common
barycenter at their shared angular velocity, w, which corresponds
to an orbital period of 27.32 days.
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By switching from the (X,Y) inertial reference frame to (x.y)
rotational reference frame via the coordinate transform shown
in Equation (2), the positions of the primary bodies (Earth and
Moon) become fixed in time, 77 and 73] respectively. These
locations are given in terms of the mass parameter, 1 defined in
Equation (1), and can be seen in Figure 2 (right).
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By utilising Legendre’s transform, the equations of motion
within the rotational reference frame can be defined, as shown
in Equation (4). The acceleration on the body is becomes not only
a result of the gravitational force but the fictitious centrifugal and
coriolis forces.
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B. The Bi-Circular Restricted 4 Body Problem (BR4BP)

The BR4BP extends beyond the CR3BP and can be described
as two coexisting pairs of gravitational systems rotating indepen-
dently of one another. In the case of the Sun-Earth-Moon system,
demonstrated in Figure 3 (left), the two systems can be described
as the Earth-Moon system rotating around their centre of mass, Co
and then the Sun-C'; system rotating around the centre of mass,
(1. The additional restriction this model must include is that the
perturbations induced by the Sun do not influence the Earth-Moon
orbit. As a result, the mass parameter, po and anguluar velocity,
wy are equal to those defined in Section 2 A. But the Sun-Cs
system’s mass parameter, ;; and angular momentum, w; must
also be considered and are given in Equation (5).
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Inorder to achieve a comparable reference frame to the CR3BP,
the coordinate transform translated from the inertial frames
centre C to the centre of the Earth-Moon system, C'5 and then
performed a rotation defined by the angular velocity, ws, outlined
in Equation (6). As shown in Figure 3 (right), this achieves a
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FIG. 3: The two reference
frame used to visualise the BR4BP, the inertial frame centered at C'; (left) and the rotational frame of the Earth-Moon System centered at C'y with the Sun ’orbiting” (right)

frame in which the Earth and Moon’s position are fixed at 7 and
77} as defined in Equation (3). The Sun then rotates the centre,
(5, at a angular velocity of ws — w1, corresponding to a orbital
period of 29.53 days, resulting in the time dependent position 7
given in Equation (7).
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As before, Legendre’s Equation is used to determine the
equations of motion within the rotational frame, which now
include the gravitational forces from the Sun, Earth and Moon,
as well as the ficticious forces. A non trivial component of the
equations to highlight are the final terms which are a result of the
translation between barycenters.
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3. Variation in Equilibrium Positions
A. Methods for Solving Equilibrium Positions

Although the CR3BP produces equilibrium solutions fixed
in time (LL1-5), in the BR4BP reference frame the Sun’s location
is time dependent and therefore the corrosponding equilibrium
points are instantaneous (E1-5). These variations from the original
Lagrange points are used to quantify the effects the Sun within
cis-lunar space, offer an insight into its effect of the dynamical
system and thus represent the importance of its inclusion within
orbital modelling.

The instantaneous equilibrium positions refer to where the
gravitational and fictitious forces cancel for a given Sun angle
(0 = (wg —w1)t). They are therefore located where a stationary
body (z = y = 0), has an acceleration, given in Equation (8),
equal to zero in both dimensions (& = i = 0). These solutions
to the multi-dimensional acceleration were identified using *mul-
tivariate minimisation with Newton’s Method’ through Python’s
’Scipy.Opitimise’ library, which utilises the Jacobian matrix as a

coefficent matrix [12]. Due to the potential for more than 5 coex-
isting equilibrium points once the Sun was introduced, the starting
conditions were taken as a (1000 x 1000) meshgrid of points within
a square £1.5 LD from the center C'5. Each starting location was
then iterated using Newton’s method to attempt to find an solution
for the system to within a precision of =1000m. Once complete all
successful solutions were tested for uniqueness against each other.
This was repeated for Sun orientations between 0 and 360° every
0.1°. The method was also used to identify the location of the com-
monly studied L1-5 points within the CR3BP, using Equation (4),
to allow comparison and verification with literature values.

In comparable literature, authors express all equation of motion
in their non dimensional form in which masses, distances, angular
velocities and hence time are normalised [10]. Although this
provides the benefit of generalising the system and reducing the
unnecessary constants within the calculations, it was found to
in fact hinder the overall accuracy of the results in this paper
due to the methods and programming language used, Python.
By reducing the units of distance by a factor of 3.847 x 10® (1
lunar distance) and increasing the units of time by a factor of
3.756 x 105,(0712), the overall values of acceleration are reduced

by ~1.84 x 10~2°. This required the level of precision to be sig-
nificantly higher when numerically solving the equations and thus
increased the processing demand beyond the resources available.

B. Results for Solving Equilibrium Positions

Figure 4, shows the spread of instantaneous equilibrium points
across a full ’orbit’ of the Sun around the Earth-Moon system.
Firstly, the accuracy of the numerical methods employed was ver-
ified by comparing the positions achieved for the Lagrange points
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FIG. 4: The spread of instantaneous
equilibrium points (E1-5) causes by Sun perturbations over an effective
orbit of 29.53 days, in comparison to the CR3BP fixed Lagrange Points (L1-5)
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TABLE I: The locations determined
using Newton’s Method for the Lagrange points (L1-5) within the CR3BP and
the total spread in the instantaneous equilibrium points (E1-5) within the BR4BP.

Equilibrium | Position in CR3BP| Total Variation in BR4BP
+3x1075LD +6x107LD

L1/El 0.8363624 AX'\ _ (0.0013004
0.0000000 AY 0.0035483

Ly (1.1547940) AX) ) (0.0027276

0.0000000 (AY 0.0091717>
L3/ E3 —1.0042802 AX _ (0-5880702
0.0000000 AY 1.8150390
L4/ F4 0.4874655 AX _ [ 0.8960414
0.8653501 AY 0.2673181
LS/E5 0.4874655 AX _ [ 0.8960414
—0.8653501 AY 0.2673181
within the CR3BP, shown in Table I, with literature data [10]. They
were all shown to agree to within £0.00005LD (£19235m,).
Due to this very strong correlation, we could confirm our methods
worked and further results were valid. However, the error was an
order of magnitude greater than the precision the program sought
(£1000m), which was likely a result of slight differences in the
systems input parameters such as mass and separation. Thus

demonstrating the additional sources of uncertainty that must be
considered other than those from the computational methods.

Position

By comparing the extent to which the Sun perturbs the (in-
stantaneous) equilibrium positions (E1-5), it was found that the
maximum variations in E1 and E2 are more than two orders of
magnitude smaller than that of E3, E4, ES, (shown in Table I) and
thus are not shown within Figure 4 as their deviations from L1 and
L2 could not be seen. This is as expected due to their proximity to
the Moon and therefore the reduced significance of the Sun’s influ-
ence. Secondly due to their symmetrical locations, the variations
in E4 and ES5 over the Sun orbit are found to be exact inverses
of one another, and consequently although E5/L5 is focused on
within the paper, the results for E4/L4 are directly comparable.

It is easy to assume that the Sun’s presence has the greatest over-
all effect on E3, with its maximal positional spread being twice
that of ES (in opposite directions), however when considering
stability it is also important to consider the rate of change of these
variations. From Figure 5, it is clear that the maximal equilibrium
shift of ES (in both x and y directions) happens at Sun orientations
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FIG. 5: The positional variation of ES over the Sun’s *orbit’ of the
Earth-Moon Sytem (360°) along the x axis (top) and y axis (bottom). The fixed
location of the corresponding Lagrange point, L5 is also marked by dashed line.
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FIG. 6: The positional variation of E3 over the Sun’s ’orbit’ of the
Earth-Moon Sytem (360°) along the x axis (top) and y axis (bottom). The fixed
location of the corresponding Lagrange point, L3 is also marked by dashed line.

of ~120° and ~300°. And occurs within a (Sun) phase change
of 32.53° corresponding to a time frame of 2.67 days. Therefore
this shows a sudden and rapid shift in the dynamical system which
could significantly effect the stability of the L4 and L5 points.

On the other hand, the variation of E3, shown in Figure 6,
shows a much more convoluted trend, due to the break down of
the one to one relationship. This indicates the presence of multiple
(up to 3) instantaneous equilibrium points within the region of L3,
for Sun orientations between 68.19 and 111.41° as well as 148.19
and 291.41°. And therefore although the maximum difference
in equilibrium position is large, shown in Table I, this occurs
between ’separate points’ and thus can not be taken as an accurate
measure of the regions dynamical volatility .

4. Effect on Dynamical Stability

In order to determine the dynamical consequences of these
shifts in equilibrium points over time, numerical integration was
employed to model bodies” motion forwards in time. This allowed
us to determination whether the Coriolis force surrounding 1.4 and
L5 acts as a sufficient natural counter to the Sun’s perturbations
and thus whether they can still be considered ’stable’, as well as
quantify the effects on the already unstable L3 point.

A. Methods for Investigating Dynamical Stability

The differential equations of motion for the gravitational
systems, given within Equation (4) and Equation (8), were solved
using the fourth-order Runge-Kutta (RK4) method. Both the
CR3BP and BR4BP were analysed inorder to provide a compar-
ison. RK4 was chosen due the benefits in accuracy it offers from
taking weighted averages across 4 positions for each time step.

As a standard across the paper, time steps of 100 seconds were
used. The motion was modelled 100 years into the future which
acts as an upper value for a typical mission’s ’life span between 30
and 50 years’ [13]. Additionally due to the Sun’s time dependent
position within the BR4BP and its effect on the equations of mo-
tion, an initial Sun orientation of 0° was used across all simulations.

The stability of points was quantified via two methods, firstly
stable positions which remain relatively stationary in time, such
as L4 and L5 within the CR3BP, where analysed based on their
maximal displacement from the original location over the 100
year period. Unstable locations, which drift from their starting
position were assessed via the time taken for them to drift 0.2 LD
from their original location.

When analysing the stability of *equilibrium’ positions within
the BR4BP, both the CR3BP’s Lagrange points, L3-5, and the pre-
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TABLE II: The
positions of the instantaneous equilibrium points, E1-5, at Sun orientations of 0°

|[E3(0) |[E4(0) |E5(0)

Position —1.0012284 0.2798798 0.2798798
+3x107SLD|\ 0.0000000 0.9567248 —0.9567248

viously determined instantaneous equilibrium positions, E3-5(6) at
0° were used as starting positions. These values, seen in Table II,
were determined in Section 3 and especially in the case of E4 and
ES5 vary significantly from their corresponding Lagrange points.

B. Results of Dynamical Stability

The Sun’s effects on the L3 point is discussed first. Due to the
equilibrium point being unstable, it’s relative stability is assessed
based on the time frame it remains within 0.2 LD of the original
location seen, in Table III.

TABLE III:
The stability time frame of the Lagrange point, L3, and its corresponding
instantaneous equilibrium position E3(0) within the CR3BP and BR4BP systems

Initial Position L3 L3 E3(0)
Model CR3BP BR4BP BR4BP
Stable Time Period

441.13 26.06 199.75
[Days]

By comparing the behaviour of bodies originating at the
L3 point in both dynamical models, it is obvious that the Sun
significantly reduces the locations stability as the time period
in which the body remains within the region decreases by more
than a factor of 16. This suggests that spacecrafts held at the L3
point of the Earth-Moon system would require significantly more
station keeping than originally suggested by the CR3BP and thus
decreasing their potential lifespan. However, by initially position-
ing the body at the BR4BP’s instantaneous equiluibrium position,
which in the case of this simulation starting at 0° is E3(0), we find
a much more stable location accounting for the Sun’s presence.
Here the ’stable time period’ is only half that of L3 within the
CR3BP, and 4.6 times longer than the L3 point within the BR4BP.

While looking at the effect of the Sun on the stability of the
L4 and L5 points, we will once again only discuss the case of
the LS point due to their almost identical results. Within the case
of a stable point such as ’L5’, the stability is quantified based on
the maximum deviation from the starting equilibrium position,
as shown in Table IV.

As expected due to the Coriolis force acting as a restoring
force, variations in a body’s position when placed at L5 within the
CR3BP are incredibly small, shown in Table IV, corresponding to
a maximum deviation of just 6.89 m. However, we find that if we
place a body at L5 within the BR4BP it no longer becomes stable
and drifts further than 1000 LD away over the 100 year period.
Additionally it drifts outside 0.2 LD of its original location within
16.52 days and therefore is in fact less stable’ that L3 within the
BR4BP model. Similarly to before, the instantaneous equilibrium
point E5(0) was then investigated and found to be stable position

TABLE IV: The stability of the Lagrange point, L5, and its corresponding
instantaneous equilibrium position E5(0) within the CR3BP and BR4BP systems

Initial Position | L5 L5 E5(0)

Model CR3BP BR4BP |BR4BP
Deviation in 1 2056 10-8| 1 x 103(3.1156 x 106
Position [LD]
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within the BR4BP, only drifting by 1074.26m over the 100 year
period. Although this is still a significant jump from the CR3BP,
it is a very small distance relative to the scale of cis-lunar space.

Overall the behaviour surrounding the 1.3 and L5 points, shows
that once the Sun is accounted through the BR4BP, there is a
significant effect on the stability on the equilibrium points of the
CR3BP and therefore its inclusion within orbital modelling is vital.
By going on to investigate the behaviour on bodies originating at
the instantaneous equilibrium points E3(0) and E5(0) we observe
an increase in stability compared to those at the Lagrange points,
suggesting them as more useful locations to host spacecrafts such
as orbital outposts and observatories.

5. Future Research
A. Implications for Mission Planning

One interesting comparison between the two methods used
to study the dynamic stability of cis-lunar space was the the
significant difference between the variation in position of
equilibrium points and the real world effect this had on the motion
of bodies within the system. Using the instantaneous equilibrium
position ES as a demonstration, the results of Section 3 showed
huge variations in its position during the Sun’s *orbit’ of the Earth
and Moon, with a maximium deviation of 0.9342 LD from its
initial position. However despite this when a body is placed at
E5(0) and modelled forward in time, as done in Section 4, its
position only varied by 3.1156 x 1076 LD over 100 years (~
1236 ’Sun orbits’). This can be attributed to two factors, firstly the
Coriolis force being sufficiently large to counter the changes in
the dynamic system and secondly the Sun’s relatively short orbital
period, causing the force to constantly change direction and limit
significant linear acceleration on a body.

By further considering the idea that the periodic motion of the
Sun causes periodic accelerations within the dynamical system
that cancel each other over time, it raises the potential for more
stable positions to exist than those that originate at instantaneous
equilibrium positions. With significantly higher computational
resources and introducing parallel processing techniques, a
(1000x1000) meshgrid of points could be numerically integrating
forward in time to determine whether such positions existed. One
of the major restrictions placed on the simulations within this
paper was limiting the initial Sun orientation to exclusively 0 °.
In the future one could not only robustly investigate all starting
positions within cis lunar space through numerical integration but
also all initial Sun orientations. This would not only allow us to
determine the most stable starting position but whether certain
starting orientations/ times are more stable than others.

One of the assumptions made within this paper that must be re-
viewed is the feasibility of being able to not only place spacecrafts
within precise locations in cis-lunar space, but simultaneously
being able to ensure they are stationary within the Earth-Moon
rotational frame when doing so. Due to the likely error in mission
trajectories to target locations, the effect of variations in the initial
parameters such a & and ¢ have on stability requires further
investigation in future research. Alternatively, significant progress
has made using invariant manifolds and nonlinear dynamical
systems theory to identify stable motion around legrange points
such as those in halo or Lyapunov orbits [14].

B. Limitations of BR4BP and Higher Fidelity Modeling

As mentioned in Section 1, modeling the chaotic dynamics
of gravitational systems is a very computationally demanding
process and therefore models such as the CR3BP and the BR4BP
are employed to introduce restrictions to the mechanics of the
system. When using these models it is vital to understand the
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significance of their simplifications and the effect they have on
the uncertainty in the results.

Firstly, although the Earth’s orbit around the Sun is almost
perfectly circular, with an eccentricity of 0.0017, the Moon’s orbit
of Earth is much more elliptical, with an eccentricity of 0.055, thus
deviating from the Bi-Circular model used within this paper [15].
Secondly, the Moon’s orbit has an inclination of 5.1° in relation
to the ecliptic plane [15] rather than all motion occurring within
the same plane as suggested by this paper’s analysis. Finally, in
addition to all of this, one of the major computational benefits
of the Bi-Circular Restricted Four-Body problem is being able
to treat the Sun-Earth and Earth-Moon Orbits as gravitationally
independent on one another however in reality the Sun causes
major perturbations to the Moon’s orbit such a shifts in inclination,
eccentricity and semi major axis [16].

As a result of the model’s deviations from the true Sun-
Earth-Moon system, the levels of uncertainty are much higher
levels than those of created by precision level of the numerical
methods employed. Looking forward, as processing power grows
exponentially, the scientific community will continuously be able
to improve the accuracy of the simulations used and account for
additional factors such as ’photogravitational forces, variation of
masses, the Pointing-Robertson and Yarkovsky effects and the
atmospheric drag and solar wind’ [17].

6. Conclusion

This paper has demonstrated the importance of including
the Sun within orbital mechanics simulations of cis-lunar space
due to the effects it has on the dynamical system and reducing
it’s stability. It has firstly done so by determining the spread in
instantaneous equilibrium points, in the BR4BP, over the Suns
orbit. This provides evidence for the volatility of the gravitational
system, with the L3 point, located at [-1.0042802, 0.0000000] LD
in the Earth-Moon plane varying up to 1.815 LD over the orbital
period. Additionally the L4/ LS5 points located at [0.4874655,
£0.8653501] are seen to vary by up to 0.9342 LD.

The effect of these periodic shifts on bodies held at equilibrium
points was then assessed. Bodies held at the L3 point were seen
to remain within 0.2 LD from their initial location for only 26.6
days compared to the 441.13 days when the Sun is not accounted
for, representing a significant destabilisation of the region.
Additionally, those held at the L5 points went from remaining
within 1.7926 x 10~8 LD of where initially placed for 100 years,
to rapidly drifting 0.2 LD within 16.52 days, and therefore could
no longer be considered a ’stable’ equilibrium position.

It also offers evidence for the existence of more stable positions
than those traditionally defined as the Lagrange points from the
Circular Restricted Three Body Problem and ultimately better
locations for hosting missions. By trialing the instantaneous
equilibrium position at 0 © as starting locations. The use of E3(0),
[-1.0012284,0.0000000] LD, sees a ’stable period’ of 199.75 days
which is longer than that for the traditional L3 points. And finally
the use of E5(0), [0.2798798, -0.9567248] LD, can be seen at a
stable’ point once again, varying by only 3.1156x10~% LD over
100 years, with comparable results for E4(0).
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Scientific Summary for a General Audience

During the 21st century, the developed world has grown increasingly dependent on systems within space. For example, society relies
on satellites for everyday tasks such as weather forecasting, bank transfers and navigation with GPS. Looking forward to future missions,
such as NASA’s Artemis Programme, there is currently significant interest in advancing the human presence in space with projects like
the Lunar Gateway, which will support the sustainable exploration of the moon and pave the way for missions to Mars and deep into
the solar system. When planning such missions, the Lagrange points, positions in space where gravitational forces cancel with one another,
appeal to the scientific community due to their potential to host space stations and observatories in a fixed position with minimal fuel usage.

With the desire to plan ever more complex missions comes the need to be able to model the motion of spacecraft with increasing accuracy.
However, the complexity of the gravitational systems in space means that precisely predicting the future motion of bodies requires a vast
amount of computational power and therefore, simplifications are often made, and numerical methods are used. This paper analyses the
effect of the Sun on bodies within cis-lunar space (the region close to the Earth-Moon system) and demonstrates the importance of including
it when performing calculations. It goes on to identify more stable locations in space than those calculated when only considering the Earth
and Moon (Lagrange points), which would allow long-term missions to be more economically viable and reduce the need for station keeping.
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