
*

Mapping Rockets’ Trajectories In Gravitational Systems
Ever since Newton first approached the problem in 1687, physicists have tried to understand the differential equations determining the subsequent motion of multiple bodies under their mutual gravitational
attraction [1] With the rise in artificial satellites orbiting our solar system and interest in exploiting asteroids due to their potential as ‘vast reservoirs of valuable resources’ [2], it is growing ever more critical to be

able to predict the chaotic motion of bodies entering complicated gravitational systems.

The Restricted Three-Body Problem

Mathematically, trying to map the motion of three bodies within a mu-

tual gravitational field ‘involves 18 first-order differential equations’ [1],

and therefore is commonly simplified to give what is referred to as ‘the

restricted three-body problem’.

Figure 1. A figure showing the structure of the restricted three-body problem and vector

conventions.

This describes two bodies initially at positions, r1 and r2, and of significant

mass, M1 and M2, respectively, rotating about their shared centre of mass

in circular orbits, allowing the determination of a third body’s subsequent

motion within the plane of the original two bodies. The third body must

have insignificant mass, m, so it has a negligible effect on the original

bodies within the system.

Newton’s laws of gravitation dictate that the force exerted on the third

body at a position r from the centre of mass is given by:

F = − GM1m
|−→r − −→r1 |3

(−→r − −→r1) − GM2m
|−→r − −→r2 |3

(−→r − −→r2) (1)

Due to the bodies’ orbits around their centre of mass at a shared angular

frequency, w, given by Kepler’s third law, r1 and r2 are time dependent.

However, by using a rotational transform (Eqn 2), the bodies’ motion can

be observed within a reference frame, in which they are stationary and

therefore r1 and r2 are constant, using Lagrange’s equation (Eqn 3).

x′(t) = x cos ωt − y sin ωt (2a)

y′(t) = y cos ωt + x sin ωt (2b)

d

dt
(dL

dq̇j
) − dL

dqj
= 0 (3)

Where L is the Lagrangian.

This creates the equations of motion for the rotational frame shown in

Eqn 4, which include inertial forces: the Coriolis Force and the Centrifugal

Force.

ẍ = 2ωẏ + ω2x − (1 − µ)ω
2(x − x1)

|−→r − −→r1 |3
− µ

ω2(x − x2)
|−→r − −→r2 |3

(4a)

ÿ = −2ωẋ + ω2y − (1 − µ)ω
2(y − y1)

|−→r − −→r1 |3
− µ

ω2(y − y2)
|−→r − −→r2 |3

(4b)

µ = M2
M1 + M2

(4c)

. .

Legrange Points

The resulting equations of motion achieved cannot be solved analytically

and show chaotic behaviour for many starting locations and velocities.

Mathematicians Euler and Lagrange discovered that ‘there are five equi-

librium points in the vicinity of the two orbiting masses’ [3], referred to as

Lagrange points.

The equilibrium position results from the gravitational attraction of both

bodies exactly counterbalancing the centrifugal force[4]. The chaotic

behaviour shown outside of these initial equilibrium positions makes it

even more important for physicists to be able to ‘find regions that display

predictable behaviour’ [1].

From Fig.2, we can see that the L1−3 lie along the axis connecting the

two rotating bodies in the rotational reference frame. And therefore, are

given by the solutions of:

x − (1 − µ)(x + µ)
|x + µ|3

− µ(x − 1 + µ)
|x + µ|3

= 0 (5)

Upon analysis of the stability of the given Lagrange points, the curvature of

the effective potential exposes L1−3 as dynamically unstable due to them

being saddle points, meaning small variations from the exact equilibrium

positions will grow exponentially over time [3]. Whereas L4 and L5 both
show stability due to a correctional Coriolis force effect, meaning they

have the potential to create stable orbits of asteroids such as those found

on Jupiter’s orbits.

Figure 2. A figure showing the location of Lagrange points L 1-5 relative to the location

of the rotating bodies.

Computational Advantage Of Rotating Reference
Frames

By building the centrifugal and coriolis force into the differential equa-

tion of motions, it has allowed the earth and moon to be stationary

in the reference frame and therefore has reduced the requirement to

calculate their position on their fixed orbit for each given time step.

This has significantly increased the computational efficiency of the

approach and in future will allow for deeper numerical analysis, such as

determining a contour plot for the effective potential surrounding the

Lagrange points in the rotating reference frame, and thus the stability

of Lagrange points.

Numerical Approach

We have applied two standard methods to solve the differential equations

outlined in Eqn 3: the Taylor expansion and the fourth-order Runge-Kutta

formula. Focusing on the Earth-Moon system, we have mapped the future

orbits of low-mass objects within the system’s gravitational field.

We have focused our analysis on the area surrounding the L2 point and
to be initially stationary in the rotational frame. Our L2 point’s position
was found through solving Eqn 5 using iterative methods and achieved

a result of 1.1557 Lunar distances. The points on either side are given by

varying the separation from the moon by ± 10% and 20%

Figure 3. A figure showing the 2D deviations from the L2 point over 2 orbital periods

depending on the initial starting conditions, evaluated using fourth order Runge-Kutta.

Results and Discussion

The future trajectory of the low-mass objects was evaluated using

1,000,000 iterations over the 2 orbital periods resulting in a time step of

4.7140 s.

Analysing the behaviour modelled at the L2 point itself strongly verifies
the numerical approximation used as it only sees a maximum deviation of

1.3417x10−15 lunar distances from its initial position over 2 orbital periods,

a 8.6172x10−13 % change from it initial displacement from the moon.

Fig 3 and 4 both show data calculated from the fourth-order Runge-Kutta

method, which is typically a more accurate method for a given time step

as a result of taking a weighted average over 4 points around each step.

Figure 4. A figure showing the deviation in distance from the L2 point over 2 orbital

periods depending on initial starting conditions, evalutated using fourth order

Runge-Kutta.

Fig 4 supports the idea that L2 is an unstable saddle point. With those

trajectories starting closer to the centre of mass quickly falling into an

accelerating orbit towards it, therefore explaining why their deviations

tend to a constant. And those trajectories starting further from the centre

of mass drift outwards as there is insufficient gravitational attraction to

balance the centrifugal and coriolis force created by the rotation and

therefore ’spinning outwards’ from the stable orbit.

Looking Forward

Determine Stability Of Legrange Points and be able to plot contour

plots of effective potential.

Investigate Trojan Points Within The Sun-Jupiter System including

the stability of their asteroids, and the limits on the initial trajectories

that would allow them to form.
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