58 UNIVERSITY OF
CAMBRIDGE

5
C1 Research Computing - Coursework Report

Jacob Tutt (JLT67)

Department of Physics, University of Cambridge
December 18, 2024

Word Count: 2974

1 Introduction

This report presents dual_autodiff, an automatic differentiation package, through discussing the
motivation for its development, its core functionalities, and the rationale behind its structure and
design. Its primary focus is to provide a critical review of the package’s architecture, implementa-
tion and preformance while discussing potential future developments.

1.1 Background

Automatic differentiation (AD) has been a well-established area of research in fields such as compu-
tational fluid dynamics and atmospheric sciences for many years [2]. Its popularity stems from its
ability to compute derivatives of functions with machine precision while significantly reducing the
computational cost compared to traditional numerical methods [1]. Recently, its role has become
increasingly important in machine learning, where derivatives, particularly gradients and Hessians,
are ubiquitous in optimisation and training [2].

The mathematical framework of forward-mode AD is provided by dual numbers, which are defined
as:
D= {a—+be:a,beR} (1)

where € is a non-zero number with the defining property:

2 =0.

When functions are evaluated using dual numbers a + be, their Taylor expansion can be expressed

as:
L@ e 1)

o1 3 (be)® + - - (2)

fla+be) = f(a) + f'(a)(be)

(be)
Since any higher-order terms than e? vanish by definition, the result simplifies to:
fla+eb) = f(a) +bf (a)e (3)

Hence, the result of evaluating f(a + be) is a dual number where:
e Real Part (f(a)): The function evaluated at a.

e Dual Part (bf’(a)e): The functions first derivative evaluated at a, scaled by b.

This property forms the foundation of automatic differentiation. By evaluating a function using a
dual number with b = 1, both the function value and its derivative are computed simultaneously.
Further proofs and resources for a greater understanding are given in the packages documentation.
The dual_autodiff package aims to provide a framework to define dual numbers, evaluate them
for breadth of functions within Python and finally exploit this structure to provide an automatic
differentiation tool.

2 Package Functionalities

2.1 Base Dual Class

At the core of this package is the Dual class, which defines the properties of the dual numbers,
allowing their initialisation and storing their constituent parts. It also defines the formatting for
representation (-_repr__) of the dual number as a string. A demonstation of this is shown below:

Listing 1: Example initialisation of the Dual class

x = Dual(2, 1)
print (x.real)
print (x.dual)
print (x)

Output:

2

1

Dual(real=2.0, dual=1.0)

2.2 Dual Numbers’ Operations

The package goes on to support a range of basic mathematical operations for dual numbers, such
as the addition, multiplication and power operations. This allows the class to integrate with the
Python arithmetic operators (4, -, *, /, **) making it intuitive to use and more robust for the
user when defining functions. This is achieved by overloading the Python operators in the Dual
class eg (—.add__, _mul__, _pow__). The derivations of these operations in the context of the
dual numbers is outlined in Table 1, for the numbers a + be and ¢ + de:

Operation Result
Addition (+) (a+c¢)+ (b+d)e
Subtraction (-) | (a —c¢) + (b—d)e
Multiplication (*) | ac+ (ad + be)e
Division (/) a4 beade
Power (**) a™ + na™ the

Table 1: Dual Numbers Operations

The package additionally supports these operators for a combination of dual numbers and
scalars, and defines the reverse opperations for the cuammulative operators (eg. _radd__, __rmul__).
Without this functionality, the automatic differentiation tool (Section 2.5) would be limited to
functions which do not contain scalars.

The inclusion of the equality and comparison operators was less trivial, as dual numbers are
not directly comparable. This packages builds on the theory provided by Cheng [3] (1994) which
defines equality for dual numbers as the equivalence of both their real and dual components but
goes on to make comparisons based solely on their real parts (shown in Table 2).

https://dual-autodiff-package.readthedocs.io/en/latest/index.html

Operation Result
Equality (==) (a==c)A(b==4d)
Inequality (=) (al =c) A (b =d)
Less Than (<) a<c
Greater Than (<) a>c
Less Than or Equal To (<) a<ec
Greater Than or Equal To (>) a>c

Table 2: Dual Numbers Comparison

A small range of examples is provided below, with a much more extensive list available in the
packages documentation and notebook.

Listing 2: Example of Dual Number Operations

x = Dual(2, 1)
y Dual (3, 2)
print(x + y)
print (x * y)
print (x ** 2)
print(x == y)
print(x < y)

OQutput:

Dual (real=5.0, dual=3.0)
Dual (real=6.0, dual=7.0)
Dual (real=4.0, dual=4.0)
False

True

2.3 Dwual Numbers’ Functions

The package also defines more complex mathematical functions within the dual numbers class, a
full list of which is defined in Table 3. These functions f(a + be) are implemented using the chain
rule property defined in Equation 3, allowing the real and dual parts to be computed independently.

Function Real Part | Dual Part, ¢
sin(a + be) sin(a) bcos(a)
cos(a + be) cos(a) —bsin(a)
tan(a + be) tan(a) bsec?(a)
sinh(a + be) sinh(a) bcosh(a)
cosh(a + be) cosh(a) bsinh(a)
tanh(a + be) tanh(a) bsech?(a)
arcsin(a + be) | arcsin(a) 1lia2
arccos(a + be) | arccos(a) - 1”_{12
arctan(a + be) | arctan(a) 1Jfa2
exp(a + be) exp(a) bexp(a)
log(a + be) log(a) g
Va + be Vva 2\%
pow(a + be, n) a™ na" b

Table 3: Dual Numbers Functions

These are initially defined as member functions of the Dual class, and only callable using
Dual.func(). This would require the user to define compound functions in a non-intuitive way.
Hence, the package was extended to include these functions as independent classes within the
autodiff_tools module. These functions are defined to be able to take scalars, dual numbers, or
arrays of either (discussed further in Section 2.4). Examples of single input functions are shown
below:

https://dual-autodiff-package.readthedocs.io/en/latest/index.html

Listing 3: Example of Dual Number Functions

x = Dual (2, 1)

print(x.sin())

print (sin(x))

print (log(x))

print (tan(x) + cos(x) * pow(x, 2))

Output:

Dual (real=0.9093..., dual=-0.4161...)
Dual (real=0.9093..., dual=-0.4161...)
Dual(real=0.6931..., dual=0.5)

Dual (real=-3.8496..., dual=0.4726...)

2.4 Numpy Integration

In fields such as machine learning, it is often necessary to differentiate functions across batches or
large arrays of data points, highlighted by ongoing research into the parallelisation of automatic
differentiation [5]. In order to address this need (at a elementary level) and enhance the package’s
utility in modern applications, Version 1.1 of dual_autodiff introduced seamless integration with
Numpy arrays. This implementation is achieved by exploiting Numpy’s ability to identify over-
written operators and functions. The implications of this approach on computational efficiency are
further discussed in Section 2.7. Its practical application is shown below:

Listing 4: Example of Numpy Integration

x = np.array([Dual(2, 1), Dual(3, 2)1, ...)
print (log(x))
print (tan(x) + cos(x) * pow(x, 2))

Output:
[Dual(real=0.6931, dual=0.5000), Dual(real=1.0986, dual=0.6667), ...]
[Dual(real=-3.8496, dual=0.4726), Dual(real=-9.0525, dual=-12.3794), ...]

2.5 Automatic Differentiation

Using the Dual number’s framework described in the previous sections, an automatic differentiation
function (auto_diff) is introduced to the autodiff _tools module.

The automatic differentiation function takes a function (composed of the arithemetic operations
and functions defined in Tables 1 and 3) and a scalar value(s) at which to evaluate it and its
derivative. Due to the nature of dual numbers this can be simply implemented by:

1. Accepting a function and a scalar value (z) as input.
2. Initialising a dual number (D = z + €) from the scalar value.
3. Evaluating the function at a D, f(D).
4. Return Function Value: f(a) = real(f(D)).
5. Return Derivative Value: f'(a) = dual(f(D)).
An example of its application is shown below:

Listing 5: Example of autodiff Function

def f(x):
return x **x 2 + 2 *x x + 1

x = 2

value, derivative = auto_diff (f, x)
print (value)

print (derivative)

Similairly for an array of values

x_array = np.array([2, 3, 4])

value_array, derivative_array = auto_diff (f, x_array)
print(value_array)

print (derivative_array)

Output for single input:
Value: 9.0

Derivative: 6.0

Output for array of inputs:
Value: [9.0, 16.0, 25.0]
Derivative: [6.0, 8.0, 10.0]

This functionality was further expanded in the function multi_auto_diff to support the ex-
tended case in which the user wishes to evaluate multiple functions and their derivatives simulta-
neously. This can be achieved by passing a list of functions as well as the scalar values at which to
evaluate them. The performance of the automatic differentiation is demonstrated below in Section
2.6.

2.6 Validation of Automatic Differentiation

The validity of the package’s automatic differentiation was tested by comparing its results to the
analytical derivative for a range of functions. These functions (of varying complexity) and their
analytical derivatives are defined in Table 4.

Name Function Analytical Derivative
f 2+ 2¢ + 1
f2 sin(z) cos(x)
f3 log(sin(z)) + 2% cos(x) Z?j((i)) + 2x cos(x) — x? sin(x)

Table 4: Functions and their analytical derivatives used to verify the packages automatic
differentiation ability

The functions and their analytical derivatives were evaluated over the range = € (0,7) and
compared to the results from automatic differentiation, using the multi_auto_diff function. More
examples of the exact implementation can be found in the packages documentation and notebook.
The results of this comparison are shown in Figure 1.

12 Analytical: fi(x) 1.0 Analytical: f>(x) 0 Analytical: f3(x)
—— auto_diff: f1(x) —— auto_diff: f2(x) —— auto_diff: f3(x)
-2
-4
= X X -6
[y W [
-8
-10
‘12
15 20 25 3.0 00 05 10 15 20 25 3.0
X X X
R 1.00 o .
7 Analytical: f'1(x) Analytical: f'5(x) 30 Analytical: f'3(x)
—— auto_diff: f'1(x) 0.75 —— auto_diff: f5(x) 20 —— auto_diff: f3(x)
6
0.50
10
5 0.25
X < X 0
<4 o 0 <
—0.25 -10
3
-0.50 =20
2 -0.75 _30
00 05 10 15 20 25 3.0 00 05 10 15 20 25 3.0 00 05 10 15 20 25 3.0
X X X

Figure 1: Comparison of the analytical and automatic differentiation results for the functions
defined in Table 4, showing both the function and their derivatives’ values as well as the
maximium difference between them

For all functions, the automatic differentiation results were consistent with the analytical deriva-
tives, with fi(z) and f2(x) having zero deviation from the analytical form and the maximum devi-
ation for f3(r) being 7.11 x 10~1°. This falls within the expected numerical error for floating-point
calculations and demonstrates the package’s ability to produce exact derivatives through automatic
differentiation.

https://dual-autodiff-package.readthedocs.io/en/latest/index.html

2.7 Comparison with Numerical Differentiation

To justify the use of automatic differentiation, the package’s performance is compared with tra-
ditional numerical methods, using accuracy, speed, and memory usage as metrics. Both forward
difference (Eq 4) and central difference (Eq 5) methods are comparison against. The benchmark
that these are each evaluated for is differentiating f3(z) from Table 4 for 100 data points over the
range of z € (0, 7). Each metric provided is averaged for 100 runs.

f'(z) ~ w (4)

Firstly, we compare the method’s computational overheads (Table 5), and can see a clear advan-
tage in terms of speed and memory usage for the numerical approaches. Typically both numerical
methods are two orders of magnitude faster and use on average ~ 78% of the memory. Although
initially unexpected, this can be atributed to each of the methods being preforming simultaneously
on 100 data points for each iteration. Hence the numerical derivates, which fully exploit Numpy’s
C backend, benefit from significant performance improvements through vectorisation. Improving
the package’s efficiency by further increasing its C backend usage is discussed in Section 3.

Method Avg Run Time (s) | Avg Memory (kb)
AutoDiff 0.006733 6.10
Forward Difference (h=0.1) 0.000019 (0.28%) 4.34 (711%)
Forward Difference (h = 1 x 10-19) | 0.000017 (0.25%) 134 (71%)
Central Difference (h=0.1) 0.000023 (0.34%) 5.21 (85%)
Central Difference (h = 1 x 10-1°) | 0.000019 (0.28%) 5.20 (35%)

Table 5: Comparison of Average Run Time and Memory Usage for Different Methods

The second factor to consider is the accuracy of numerical methods in comparison with auto-
matic differentiation, which was shown to be exact (within machine error) in Section 2.6. Figure 2a
shows the preformance of the forward difference method with h = 0.1 as a demonstration of where
the numerical methods fails to provide accurate results. For the case of f3(x), this can be seen as
x approaches 0 and 7, corresponding to where the function is discontinuous and hence has very
large second derivatives. Therefore automatic differentiation shows advantages towards ill-defined
regions, as it is able to provide exact derivatives for these points, whereas numerical methods are
limited by the step size’s relation to the function’s second derivative.

Figure 2 shows the maximium deviation from the analytical derivative, for the forward and
central difference methods, across varying step sizes. It can be seen that although the central
difference method is more accurate than the forward difference method, both are significanty
effected by the step size. Notably, it suggests that there is an optimal step size, h, at which the
methods reaches a maximium accuracy before the error increases again. This can be attributed
to numerical integrations requirement to balance the truncation errors with numerator’s round off
error (catastrophic cancellation [4]). The optimal step size for the central difference method was
found to be h = 7.85 x 1077 with a maximum error of 1.27 x 10~¢ and similairly for the forward
difference method h = 1.44 x 1079 with a maximum deviation of 7.18 x 1072, Although important
to consider that this is an extreme case, the automatic differentiation shows clear advantages in
accuracy, with numerical methods limited to an error at least 6 order of magnitude greater than
machine precision. Thus in applications where very high degrees of accuracy are required, such as
scientific computing and machine learning, automatic differentiation would be prefered.

=== auto_diff Error || Analytical: f3(x) 17.5

3012, FD Error (h=0.1) —— auto_diff: F3(x)

()
2
Y %
—— Forward Difference (h=0.1) | 15 o5 >
20 g 5 102
z g
1258 ®
v 104 i S 107% /
=1 | ©]
2 | Lo =
> ! 10.0 5 T 106
v 011 = =
2 i S <
S i < E jpe A'\-\‘
2 -101 | e 8
o] 1 e @
a | L= o 10-10/
H 50 © <
—204 1 9] 4] .
‘ 6 @ i —e— Forward Difference
\ 5 ?E 107141 _a— Central Difference
—304 | 25 ¢ S | B Machine Precision (1e-15)
a % 107144 .. Besth (FD): 1.44e-09
0.0 = - Besth (CD): 7.85€-07
_407 T T T T T T T
0.0 05 10 15 2.0 25 3.0 10-% 10712 1071 10~ 10-° 10=* 1072
X Step Size (h)
(a) Comparison of accuracy of automatic (b) Accuracy against step size for forward and
differentiation and numerical methods central method differentiation

Figure 2: Comparison of accuracy for numerical differentiation across step sizes

3 Exploiting C’s Optimised Performance

As highlighted in Section 2.7, the performance is constrained by Python’s interpreted execution,
which is inherently slower than C’s compiled approach. This section discusses the steps taken
to maximise the package’s performance by exploiting C. Firstly, through Cythonisaton and then
through future developemnt of the packages use of numpy’s C backend.

3.1 Cythonisation

A Cythonised sub-package (dual_autodiff x) was then created, a proccess in which the package
is converted to C allowing it to be precomplied, thus improving its run-time performance. The
structure of the package is further discussed in Section 4. The performance of the Cythonised
package (dual_autodiff x) was then compared with the original Python package (dual_autodiff),
by evaluating the automatic derivative for a range of functions (detailed in figure 3). This was
performed for single inputs (z = 1) and an array of 8 inputs, each (z = 1) for comparability.

30
mmm Time Change (Single Input)

25

mmm Memory Change (Single Input)
mmm Time Change (Array Input) 10 mms Memory Change (Array Input)
0 .
-10
=20
-30
10

N
)

Time Change (%)
=
G
Memory Change (%)

sin log tanh pow(2) log(sin(x)) + X2 + cos(x) sin log tanh pow(2) log(sin(x)) + x2 + cos(x)
Function Function
(a) Percentage change in runtime for automatic (b) Percentage change in memory usage for
differentiation in Python and Cython automatic differentiation in Python and Cython

Figure 3: Comparison of Cython and Python package’s computational overheads for automatic
differentiation for both single and array inputs

The cythonised package shows consistent decreases in runtime across all functions and input
types, in the range of 14-29% for single-value inputs. Although significant, the majority of the
original Python package’s functions are implemented through the C depenedent ‘math’ library and
thus already exploit C’s advantages and resulting in a marginal decrease. Notably, the array inputs
show a smaller fractional change, typically 2/3 of their single input counter parts. This supports
the packages success in vectorisation (section 2.4) as the package is already exploiting Numpy’s C
backend more, making its performance less changeable for Cythonisation.

On the other hand the memory usage of the Cythonised package typically shows a significant
increase, upwards of 50% for complex functions such as f3(x). This is expected due to C’s use

of non-dynamic memory allocation, which although causes greater memory demand, is one of the
features which assists the improved computational performance.

—8— Python
00201 _g cython
0.015
@
[}
£
'_
c
S 0010
2
3
)
[}
>
w
0.005 -
0.000
0 200 400 600 800 1000
Array Size

Figure 4: Scaling of automatic differentiation of the function sin(x) with array size

Finally, the scaling of run time with array size for the automatic differentiation of sin(z) is
shown in Figure 4. It shows a linear trend for both the Python and Cythonised sub-packages,
with the former consistently (= 10%) higher. Therfore, both show a computational complexity of
O(n). Contrary to before this shows that the packages are performing the calculations within the
array sequentially rather than in parallel, and thus the packages vectorisation still requires further
development.

3.2 Future Developments for C

Version 1.2 will aim to further exploit C’s capabilities by redefining the __array_ufunc__ method to
enable full vectorization of operations. The correct overwritten operators can be found within the
Future_ Development folder of the package’s repository (note this would typically not be included
in the package distribution but has been for assesment purposes). Although this method has been
shown to work for well defined cases, the Dual class’s initialisation requires rebuilding to support
all cases robustly, so is left for future development rather than compromising the packages current
functionality. A simplified example of the implementation of this method is shown below for np.sin.

Listing 6: Example of __array_ufunc__ Method

def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
if ufunc == np.sin:
real_result = np.sin(real_parts)
dual_result = np.cos(real_parts) * dual_parts

return Dual(real_result, dual_result)

4 Development of Package

This section provides a review of the software development practises followed during the coursework
and provides the motivation behind some of the decisions made.

4.1 Error Handeling

Extensive error handling was implemented throughout to ensure robustness as well as clear and
informative error messages making the package more user friendly and accessible. Examples of
these error messages can be found in the packages notebook as well as being provided within the
APT references (including examples) in the packages documentation.

https://dual-autodiff-package.readthedocs.io/en/latest/index.html

N

4.2 Package Structure

The package was structured into two modules, dual_autodiff and autodiff tools, to separatate
the core dual number functionality from the automatic differentiation tools. Despite this the
__init__.py was configured to expose all core classes and functions to the user from the package’s
root allowing for intuitive imports, such as:

Listing 7: Example of Package Imports

from dual_autodiff import Dual, Sin, auto_diff,
#or
from dual_autodiff import =*

Additionally, the package contains both the Python and Cython versions, dual_autodiff and
dual_autodiff_x, as submodules, allowing users to easily import either version for comparison.
Both submodules have been included in the wheel distribution for assessment purposes however,
in practice, only the optimized Cython version would typically be distributed.

Notably, if both versions are imported simultaneously, it can be difficult to distinguish between
identical functions, such as auto_diff. To avoid this issue, the coursework renames the Cythonised
functions on import (typically not required but was included for comparison).

Listing 8: Referencing Cythonised Functions on Import

from dual_autodiff import auto_diff
from dual_autodiff_x import auto_diff as auto_diff_x

Note, when wheel files are used, the user may run into conflicts between the installed and local
version of dual_autodiff _x in the terminal - discussed in Section 4.4.1.

4.3 Package Distribution and Wheels

The package includes wheels for linux architecture running either Python 3.10 and 3.11 in the
wheelhouse directory (cp310-manylinux x86-64 and cp31l-manylinux x86_64). These allows the
binary distribution of the package, containing both dual_autodiff and dual_autodiff_x subpack-
ages. User can thus install the package without preforming the Cythonisation and compilation
locally. Note, the Python version would not be typically included, but was included for assessment
purposes.

This package also supports local installation (pip install -e .), which generates and com-
piles the current architecture’s necessary files locally, such as .so files (shared object files). As
such these files are not included outside of the wheels, as they are unique to the users architecture.

4.4 Package dependencies

The package defines both essential or optional dependencies, all of which are defined within
pyproject.toml file for easy installation. This distinction was made to minimise the depen-
dencies installed on the users device and allow only the required dependencies to be installed. The
classes of dependencies are defined in Table 6. Installing these dependencies with the wheels is
equally trivial and outlined in the README and documentation.

Name Purpose Installation

Essential Core dependencies pip install -e .

Tutorial For example notebooks pip install -e ".[tutoriall"
Testing For running test suites pip install -e ".[testing]"
Documentation Building documentation pip install -e ".[docs]"

Table 6: Package Dependencies

4.4.1 Neich Conflict for Coursework

A potential conflict arises when the user installs the package from the wheels but attempts to
run the Cythonised version from the terminal in the package’s directory. In such cases, the locally
available package directory is prioritised over the installed version, leading to the program searching
for the .so files in the local directory, which are only generated during a local installation using
pip install -e .. This problem is unique to the coursework as wheels are normally distributed
independently to the source code.

4.5 Testing

A comprehensive test suite of all functionalities and edge cases was implemented in the tests
directory, using pytest. This includes 43 tests encompassing 258 statments over 7 files, each
focused on testing a specific feature. This allows the user to verify the package’s installation, and
also stop future developers from introducing conflicts. This was introduced into the continuous
integration as a pre-commit hook which is discussed in Section 4.8.

A report on the test coverage was generated using the coverage utility, showing a coverage
of 100% for the package, shown in Table 7. Note the 82% coverage for the version.py file is
neglected as it simply contains metadata such as the version number rather than core features.

Name Stmts | Miss | Cover | Missing
dual_autodiff/__init__.py 5 0 100% -
dual_autodiff/autodiff_tools.py 103 0 100% -
dual_autodiff/dual.py 139 0 100% -
dual_autodiff/version.py 11 2 82% 5-6
TOTAL 258 2 99% -

Table 7: Test coverage report for the dual_autodiff package

4.6 Documentation

Documentation on the package was auto-generated using sphinx, and is hosted on readthedocs
which relies on the .readthedocs.yml file. This provides a comprehensive guide to the package’s
functionality, including the API references, examples and context. The documentation can also
be built locally using the make html command in the docs directory, once the docs dependencies
have been installed.

4.7 Version Control

The package was developed using Git for automatic version control and exploiting setuptools_scm
for dynamic tracking. Once the first usable version [1.1.0] was released, new features where de-
veloped on separate feature branches and merged into the main branch once completed, thus not
compremising the packages functionalities.

4.8 Continuous Integration

This package made use of the following continuous integration (CI) methods:

e Pre-commit Hooks for Testing: pytest was configured to ensure all tests were passed
before allowing commits, ensuring updates would not corrupt the package. Future developers
are encouraged to do the same before submitting a pull request, highlighted in the README.

e Sychronisation of Cython: The setup.py was configured to automatically duplicate .py
files to .pyx files before running the build, ensuring the Cythonised package was always up
to date.

e Documentation: Readthedocs was configured to automatically build the documentation
on each push to the main branch, ensuring the documentation was always up to date.

5 Summary

Overall, the dual_autodiff package provides a framework to preform automatic differentiation,
supporting a wide range of functions. The package was developed following good software de-
velopment practices, and shows strong increases in the accuracy of automatic differentiation over
numerical methods. Future versions aim to further exploit C’s optimised performance improve the
packages vectorisation.

10

https://dual-autodiff-package.readthedocs.io/en/latest/index.html

5.1 Declaration of Use of Autogeneration Tools

This project made use of Large Language Models (LLMs), primarily ChatGPT and Co-Pilot, to
assist in the development of the package. These tools have been employed for:

Helping generate docstrings for the repository’s documentation.
Formatting plots to enhance presentation quality.

Performing iterative implementation to predefined code.

Debugging code and identifying issues in implementation.

Helping develop tests for the package.

Supporting generation of metadata files

Identifying spelling and punctuation inconsistencies within the report.

Suggesting more concise phrasing to reduce word count.

References

1]

Michael Bartholomew-Biggs et al. “Automatic differentiation of algorithms”. In: Journal of
Computational and Applied Mathematics 124.1 (2000). Numerical Analysis 2000. Vol. IV:
Optimization and Nonlinear Equations, pp. 171-190. 1sSSN: 0377-0427. DOIL: https://doi .
org/10.1016/50377-0427(00) 00422-2. URL: https://www.sciencedirect.com/science/
article/pii/S0377042700004222.

Atilim Gunes Baydin et al. Automatic differentiation in machine learning: a survey. 2018.
arXiv: 1502.05767 [cs.SC]. URL: https://arxiv.org/abs/1502.05767.

H. H. Cheng. “Programming with Dual Numbers and its Applications in Mechanisms Design”.
In: Engineering with Computers, An International Journal for Computer-Aided Mechanical
and Structural Engineering 10.4 (1994), pp. 212-229. URL: https://iel.ucdavis.edu/
publication/journal/j_EC1.pdf.

Annie Cuyt et al. “A Remarkable Example of Catastrophic Cancellation Unraveled”. In:
Computing 66.3 (May 2001), pp. 309-320. 1SsN: 1436-5057. DOI: 10.1007/s006070170028.
URL: https://doi.org/10.1007/s006070170028.

William S. Moses et al. “Scalable Automatic Differentiation of Multiple Parallel Paradigms
through Compiler Augmentation”. In: SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis. 2022, pp. 1-18. DOI: 10.1109/SC41404.2022.
00065.

11

https://doi.org/https://doi.org/10.1016/S0377-0427(00)00422-2
https://doi.org/https://doi.org/10.1016/S0377-0427(00)00422-2
https://www.sciencedirect.com/science/article/pii/S0377042700004222
https://www.sciencedirect.com/science/article/pii/S0377042700004222
https://arxiv.org/abs/1502.05767
https://arxiv.org/abs/1502.05767
https://iel.ucdavis.edu/publication/journal/j_EC1.pdf
https://iel.ucdavis.edu/publication/journal/j_EC1.pdf
https://doi.org/10.1007/s006070170028
https://doi.org/10.1007/s006070170028
https://doi.org/10.1109/SC41404.2022.00065
https://doi.org/10.1109/SC41404.2022.00065

	Introduction
	Background

	Package Functionalities
	Base Dual Class
	Dual Numbers' Operations
	Dual Numbers' Functions
	Numpy Integration
	Automatic Differentiation
	Validation of Automatic Differentiation
	Comparison with Numerical Differentiation

	Exploiting C's Optimised Performance
	Cythonisation
	Future Developments for C

	Development of Package
	Error Handeling
	Package Structure
	Package Distribution and Wheels
	Package dependencies
	Neich Conflict for Coursework

	Testing
	Documentation
	Version Control
	Continuous Integration

	Summary
	Declaration of Use of Autogeneration Tools

