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ABSTRACT

The global 21-cm signal from the Cosmic Dawn and Epoch of Reionisation provides an unparalleled probe of the astrophysics
governing the early Universe, yet its detection is severely hindered by Galactic foregrounds that are many orders of magnitude
brighter than the signal of interest. Chromatic distortions introduced by the antenna beam further complicate signal recovery,
requiring highly accurate foreground modelling, rigorous Bayesian model comparison, and robust validation frameworks. In
this work, we first demonstrate a substantial acceleration of Nested Sampling enabled by parallelisation on GPU architectures,
achieving reductions in wall-time and computational cost of O(10°~10°). Leveraging this increased computational capability,
we introduce a novel observation-dependent sky-partitioning scheme that dynamically defines foreground regions using the
antenna beam-convolved sky power for a given observing window. We show that this scheme improves modelling performance
through three key avenues. First, by enforcing a strictly nested region hierarchy that enables clear identification of the Occam
penalty in the Bayesian evidence, facilitating statistically principled optimisation of model complexity. Second, by enabling more
accurate inference of spatially varying spectral indices, with posterior estimates consistently centred within true physical ranges
and, thirdly, by enabling complex Galactic foregrounds to be modelled at the accuracy required for robust global 21-cm signal
recovery using a significantly smaller parameter set.
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1 INTRODUCTION high resolution (< 0.1 arcseconds) of the recently launched James
Webb Space Telescope (JWST; Gardner et al. 2006) is revolutionising
our understanding deep within the EoR by directly imaging some
of the earliest galaxies (z > 10). By revealing an excess of bright
ancient galaxies relative to prior predictions (Whitler et al. 2025),
the mission is already prompting a re-evaluation of the theoretical
models governing the Cosmic Dawn (see Li, Zhaozhou et al. 2024;
Hutter, Anne et al. 2025; Kravtsov & Belokurov 2024). However,
JWST’s small survey volumes, coupled with the intrinsic faintness
of the first luminous sources (z ~ 20 — 30), placing them beyond
reach, mean it will struggle to stringently constrain the astrophysical
parameters of these early epochs.

In comparison, the tracing of neutral hydrogen’s redshifted 21-
cm hyperfine transition from within the intergalactic medium (IGM)
promises to provide statistically robust insights into key properties
such as the initial mass function (Gessey-Jones et al. 2022), for-
mation efficiency, and spectral emissivity (Schauer et al. 2019) of
Population III stars as well as the nature of their associated X-ray bi-
naries (Sartorio et al. 2023) (for comprehensive reviews, see Furlan-
etto et al. 2006; Pritchard & Loeb 2012; Barkana 2016; Mesinger
2019). Beyond these, the 21-cm signal has also been shown to en-
code exotic physics, including the contribution of primordial black
holes (Mittal et al. 2022), interacting dark matter models (Barkana
2018), and superconducting cosmic strings (Brandenberger et al.
* E-mail: jlt67 @cam.ac.uk 2019; Gessey-Jones et al. 2024) to a potential excess radio back-

Driven by a wealth of high-resolution observations across the elec-
tromagnetic spectrum, the fields of astrophysics and cosmology have
rapidly transformed into data-rich disciplines, allowing ever tighter
constraints to be placed on the physical mechanisms and fundamen-
tal parameters governing the Universe’s evolution. At high-redshift
(z =~ 1100), observations of the Cosmic Microwave Background
(CMB) (Smoot et al. 1992; Bennett et al. 2003; Fowler et al. 2010;
Planck Collaboration et al. 2014, 2016, 2020) emitted during recom-
bination provide a high-precision snapshot of the density anisotropies
within the infant Universe. As these gravitational instabilities im-
printed on the primordial blueprint collapsed (Bernardeau et al.
2002), they eventually resulted in the distribution of nearby galax-
ies within the cosmic web seen today. These low-redshift structures
can be probed in similarly exquisite detail by large-scale spectro-
scopic surveys, such as the Baryon Oscillation Spectroscopic Survey
(BOSS; Dawson et al. 2013) and the Dark Energy Spectroscopic
Instrument (DESI; Adame et al. 2025).

Despite these two well-explored bookends, the vast majority of
cosmic history remains unmapped, most notably the Cosmic Dark
Ages (DA, z ~ 1100 — 30); the Cosmic Dawn (CD, z ~ 30 — 20) and
the Epoch of Reionisation (EoR, z ~ 20 — 6). Towards this aim, the
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Figure 1. Beam pattern for a conical log spiral antenna, shown as polar pro-
jections of the antenna gain G (0, ¢, v) inlocal altitude—azimuth coordinates
(0, ¢) above the horizon (6 < 90°). The three panels show G (6, ¢, v) at v
=50, 125 and 200 MHz to demonstrate the chromatic structure of the beam.

ground. Current experimental approaches for 21-cm Cosmology can
be broadly classified into two categories. Firstly, interferometric ar-
rays such as HERA (DeBoer et al. 2017), LOFAR (van Haarlem,
M. P. et al. 2013), the MWA (Tingay et al. 2013) and the upcom-
ing SKA-Low (Mellema et al. 2015) which aim to measure spatial
fluctuations in the 21-cm brightness temperature through its power
spectrum and, ultimately, tomographic imaging. Secondly, as a com-
plementary approach, there exists a wealth of Global 21-cm exper-
iments focusing on the sky-averaged brightness including EDGES
(Experiment to Detect the Global Epoch of Reionisation Signature
Bowman et al. 2018), PRIZM (Probing Radio Intensity at High-Z
from Marion Philip et al. 2018), SARAS (Shaped Antenna measure-
ment of the background RAdio Spectrum Singh et al. 2018), MIST
(Mapper of the IGM Spin Temperature Monsalve et al. 2024) and
REACH (Radio Experiment for the Analysis of Cosmic Hydrogen
de Lera Acedo et al. 2022). While the EDGES collaboration has
claimed the first tentative detection of the global 21-cm signal, its
large amplitude (=~ 500 mK), low central frequency (= 78 MHz), and
flattened Gaussian profile have been interpreted as either evidence
for physics beyond standard ACDM cosmology (Reis et al. 2021; Liu
et al. 2019), or as the result of residual, unmodelled systematics in
the data analysis (Hills et al. 2018; Singh & Subrahmanyan 2019;
Sims & Pober 2019; Bevins et al. 2021). The latter, non-cosmological
interpretation is further supported by the SARAS3’s null detection,
which rules out the EDGES absorption profile with 95.3 per cent
confidence (Singh et al. 2022).

While detecting the global 21-cm signal faces a number of chal-
lenges, ranging from the mitigation of radio frequency interfer-
ence (RFI; Fridman & Baan 2001) to distortions introduced by
the ionosphere (Datta et al. 2016; Shen et al. 2021), the primary
hurdle remains accurately accounting for the Galactic and extra-
galactic foregrounds emission. These contaminating foregrounds
exceed the expected cosmological contribution by approximately
three to four orders of magnitude across the relevant frequency
range (=~ 50-200 MHz) (Shaver et al. 1999). Typically, experi-
ments’ foreground removal strategies exploit the comparatively spec-
trally smooth nature of synchrotron and free—free emission, allowing
them to be modelled using power laws (Morales et al. 2006), log-
polynomials (Harker et al. 2012), or derivative-constrained functions
(Bevins et al. 2021). However, as demonstrated by Anstey et al.
(2021), the spatial structure of Galactic foregrounds, when coupled
with a chromatic antenna beam (see Figure 1), introduces frequency-
dependent distortions that can become degenerate with the underly-
ing cosmological signal (Figure 2).

To enable a statistically principled inference, the REACH collab-
oration introduced a Bayesian evidence—driven analysis framework

MNRAS 000, 1-17 (2026)

Redshift, z
21.0 15.5 12.2 10.0 8.4 7.3 6.3 5.6
1 1 I 1 1 1 1
6000 -

S WAVAN

o
© 5 4000+ 2% 101 \/
g 2
15} v T T T T T T
=1 60 80 100 120 140 160 180 200
é 20004 Frequency, v (MHz)

6T /K Residuals 6T /K Temperature / K

Lo 0.0 LAA VLIV AVAW "AAVATASMLICA Y A W B _'y_v_lv_\:-i_ RASYI AR
S “‘\1 vy V-4t V--Sf
22 -0.1
---- Noise level (+0.025 K)
12}
<
B 0.0
w
g© 0.1
o
=
o

T T T T T T
60 80 100 120 140 160 180 200
Frequency, v (MHz)

Figure 2. A demonstration of the chromatic structure introduced by the
coupling of the Galactic foregrounds and the beam, and how they can be
accounted for with the REACH data analysis pipeline. Top panel: A simulated
1 hour time-averaged observation d(v) from the REACH telescope in the
Karoo Desert, South Africa at 00:00 01-10-2019 with a conical log spiral
antenna. The data has a mock 21-cm signal and 0.025 mK of Gaussian noise
injected. The inset shows residuals beyond a fitted smooth power-law. Middle
panel: Reduced residual structure after subtracting a Bayesian nested sampling
fit model produced by the REACH pipeline using 16 parametrised regions.
Bottom panel: Emulated mock global 21-cm signals from GlobalEMU Bevins
etal. (2021), to demonstrate the success of beam-aware modelling suppressing
residuals below the magnitude of expected global 21-cm signal.

(Anstey et al. 2021, 2023) that jointly models the convolution of
sky realisations with the antenna beam alongside the 21-cm signal,
thereby allowing parameter degeneracies and associated uncertain-
ties to be accurately quantified (for a demonstration see Figure 2). As
a consequence of this approach, the structure and spectral behavior
of the low-frequency radio sky is simultaneously constrained (Carter
et al. 2025), constituting an active area of research in its own right
and a valuable resource for the broader community, independent of
a confirmed detection of the global 21-cm signal (de Oliveira-Costa
et al. 2008; Zheng et al. 2016; Dowell et al. 2017).

This paper focuses on optimising parameterised sky models in
a physically motivated manner in order to improve the recovery of
foreground spectral index parameters and thereby better mitigate
foreground systematics to levels below those that impact cosmo-
logical signal recovery. This optimisation is benchmarked using a
comprehensive Bayesian validation framework (Sims et al. 2025a),
enabling a rigorous comparison of model performance. Specifically,
we apply this framework to the REACH radiometer (Cumner et al.
2022), but the methodology is applicable to all physically motivated
analyses of global 21-cm experiments.

The remainder of this paper is structured as follows. In section 2,
we describe the Bayesian data analysis pipeline and its acceleration
through the parallel processing capabilities of Graphics Process-
ing Units (GPUs). section 3 outlines the limitations of existing sky
parameterisation approaches and introduces the observationally de-
pendent algorithm adopted in this work. The statistical validation
framework and associated performance metrics used to draw com-
parisons between methods are presented in section 4. Finally, the
results of applying this framework to simulated datasets are reported
in section 5, and conclusions are drawn in section 6.



2 BAYESIAN DATA ANALYSIS PIPELINE

In this section, we present an overview of the methodology used to
accurately simulate the antenna temperature for a given observation
(subsection 2.1), together with the parameterised forward models
(subsection 2.2) and Bayesian inference sampling algorithms (sub-
section 2.3, subsection 2.4) employed to efficiently solve the as-
sociated inverse problem. While the discussion below focuses on
accounting for the diffuse foregrounds alongside the cosmological
signal, the mathematical formalism required to incorporate addi-
tional physical effects, including RFI (Leeney et al. 2023; Anstey &
Leeney 2024), the ionosphere (Shen et al. 2022), extragalactic point
sources (Mittal et al. 2024) and environmental conditions (Pattison
et al. 2023, 2025) is already established and can be incorporated in a
modular manner. A schematic overview of the full analysis pipeline
is shown in Figure 3.

2.1 Data Simulation

To fully capture the chromatic distortions introduced by diffuse fore-
ground emissions into the observed data, simulations require full-
resolution sky models that encode realistic spatial structure and
frequency-dependent power distributions. These models will here-
after be referenced in relation to the local Alt-Az (6, ¢) coordinate
frame of the antenna and thus a function of Coordinated Universal
Time (UTC). Following Anstey et al. 2021, an observationally mo-
tivated realisation of such a model can be obtained using the 2008
Global Sky Model (GSM de Oliveira-Costa et al. 2008) evaluated at
408 MHz (Ty03(, ¢, t)) and 230 MHz (T»30(6, ¢, t)). By comparing
the two frequencies, a spatially varying spectral index field 3(0, ¢, t)
is derived as:

_ log[(T230(6, ¢. 1) — Tems) / (Taog (6, 4, 1) — Tems) ]
BO,6,1) = log(230/408) ’
(D

which is then used to extrapolate a reference sky at frequency vo
(taken here to be T»30(6, ¢, 1)) to arbitrary observing frequencies,
as shown in Equation 2. This procedure yields a continuous low-
frequency sky model Ty (6, ¢, v, 1).

v -B(6,9,1)
) +Teme. (2)

Ty (0, ¢, v,1) = [Ta30(6, ¢, 1) — Tems] (V_o
The simulated sky brightness temperature is then convolved with
the directional gain of the antenna beam, D (6, ¢,v), to produce
the corresponding antenna temperature Ty, (v, ). For demonstration
purposes through this work, the antenna beam is modeled as a 6-m
conical log-spiral antenna. To facilitate signal recovery tests, the
mock data includes a realistic mock global 21-cm signal, 751 (v).
This is modeled as a Gaussian absorption profile, My (621), with a
central frequency (v,;) of 85 MHz, a 15 MHz width (0»;), and an
amplitude of 0.155 K (A3):

(V—V21)2] . 3)

Tr1(v) = App exp|-—
21(v) 21 p[ 20_221

Finally, a noise realisation & is added, which for the purposes of
being comparable with prior work was assumed to be uncorrelated
Gaussian noise with an amplitude of 25 mK:
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Table 1. Parameters for the three observational windows used to benchmark
foreground reconstruction and signal recovery, all starting at 00:00:00 on the
respective date.

Reference Date/ Duration Configuration

Galaxy Down  01-10-2019/1hr  Galactic pole at zenith.

Galaxy Up 01-07-2019/1 hr  Galactic center at zenith.
Galaxy 4hr 01-01-2019/4 hr  Integrated transit of the Galaxy.

1 4
Taaalv,1) = - / D6, 6, ) Ty (6, §, v, 1) dQ+To1 (v) + 6. (4)
0

Throughout this work, we benchmark our parameterised models
against a range of simulated foreground complexities derived from
three distinct observational windows with varying Galactic orien-
tations, as detailed in Table 1 and visualised via the effective sky
coverage shown in Figure 4. These shorter integration periods are
intentionally selected to maximise the chromatic structure induced
by the lack of sky rotation overhead; this is particularly pronounced
in the ‘Galaxy Up’ case, where the power of the Galactic center
further magnifies the amplitude of the distortions introduced. Conse-
quently, the ‘Galaxy Up’ case represents an extreme scenario where
21-cm signal recovery would likely not be attempted in isolation on
real data. However, it serves as a robust stress test of our dynamic
models’ ability to improve foreground recovery, and ensures that our
validation metrics correctly flag reconstructions that are inadequate
for the precision required for cosmological inference. Conversely,
the 4-hour integration spans a broader range of Galactic positions,
representing a more typical and viable observation target for signal
inference. We note that while the equations presented throughout
this section maintain the time-dependent # notation for mathematical
generality, as time-resolved analysis is benchmarked in section A,
the primary analysis in this work is performed on time-integrated
data. This is simply achieved by collapsing the time domain in both
the forward models and data simulations, creating a single integrated
spectrum for each observational window.

2.2 Physically Motivated Foreground Model

While the simulation pipeline described in subsection 2.1 provides
high-fidelity realisations, the calculated spatial distribution of both
the base temperature Tyo3(6, ¢, ) and the spectral index B(0, ¢, 1)
is subject to observational uncertainties and thus likely offset from
the true radio foregrounds. When aiming to perform signal infer-
ence from observational data, using these as fixed templates would
introduce systematics into the modelled antenna temperature that
prevent the recovery of the true global 21-cm signal. To mitigate this,
the spectral indices and base-map amplitude must be simultaneously
parameterised and incorporated within the foreground model to be
jointly fit.

However, due to the nature of the one-dimensional data Ty, (v)
or two-dimensional data Tga, (v, t) produced by a single radiome-
ter, pixel-level parameterisation would be both highly degenerate
and computationally prohibitive. Therefore, we adopt a regional pa-
rameter approach (Anstey et al. 2021, 2023; Pagano et al. 2023),
which partitions the sky into Ng regions of uniform spectral index
and N, regions of uniform amplitude scaling. These are defined by
the independent binary masks, Mg ; and M, ;, which determine the
membership of a pixel (6, ¢, 1) to a specific region:
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Figure 3. Schematic of the GPU-accelerated, differentiable REACH Bayesian analysis pipeline. The parameterised forward model combines a global 21-cm signal
621cm, diffuse foreground emission Org and horizon contamination @yorizon With the antenna’s beam to generate an antenna-temperature spectrum M (6, ¢, v).
This model can be statistically compared to the observational data D (7, v) under a specific noise structure through a likelihood function L(D | M, 6). The
inference process is optimised through JAX’s XLLA compilation Bradbury et al. (2018), leveraging gradient-based BlackJAX samplers Cabezas et al. (2024) and
nested-sampling variants Yallup et al. (2025a) for efficient Bayesian posterior P(6 | D, M) and evidence Z (D | M) evaluations.

No Ng
TR0, ¢,v,1) = 3 D Ma,i(6,6,0)Mp,; (6, 6,1)
i=1 j=1 (5)

v\ 7P
X [a; (Tas(6, ¢, 1) — Tems)] (V_o) ,

where «; is a multiplicative scale factor effectively acting as a lo-
calised gain correction to the 230 MHz template, and S; is the fit
spectral index for the ;™ region.

To accelerate the forward model for a given observation window
7 and frequency band ¥, the interaction between the beam, regional
masks, and the reference base-map during the sky integration can be
precomputed. This defines a chromatic response tensor, K; ;(v,1),
which allows the resultant antenna temperature, conditioned on any
set of foreground parameters {@, E}, to be reduced to a simple series
of matrix operations,

1 4
Ki j(v,1) = v Mo i(6,9,0)Mgp (0, $,1) ©
X [Ta08(6, ¢, 1) — Tem] D(6, ¢, v)dQ,
and hence the antenna temperature is given by:
No Np B
Trg (v, 1) = ZZ% i (v, 1) ( ) + Tems- 7
i=1 j=

While previous implementations of this approach have relied on rel-
atively simple partitioning schemes, this work focuses on optimising
region definitions (section 3) to reconstruct continuous foregrounds
with a minimal parameter set. This refinement is constrained by the
condition that the models remain sufficiently expressive to ensure
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any residual systematics are statistically insignificant relative to the
noise structure, a condition verified through a comprehensive vali-
dation suite (section 4). In the interest of clarity, this paper focuses
specifically on the definition of spectral index masks (Mg ;); how-
ever, the algorithms introduced in section 3 are equally applicable to
the amplitude scale factor masks (M;), the demonstration of which
is left for future work.

2.3 Bayesian Inference

Given a forward model M describing the foregrounds and redshifted
21-cm signal through a set of parameters 6 5, we employ Bayesian
inference to perform parameter estimation and model comparison for
a given observational dataset 9. This is achieved by applying Bayes’
theorem:

LD | opm M) 7(Om | M)
Z(DIM) ’

where (6 p( | M) denotes the prior probability distribution over the
model parameters, encoding our initial state of knowledge (or lack
thereof). The likelihood, L(D | 8, M), quantifies the probabil-
ity of obtaining the observed data given a specific forward model,
parameter set, and assumed noise structure. The resulting posterior,
P(Opm | D, M), represents the updated probability distribution of
parameters after incorporating the information contained in the data.
Finally, Z(D | M) is the Bayesian evidence, which measures the
overall support for a model given the data and is defined as the
likelihood marginalised over the full prior volume of parameters:

P(Om | D.M) =

(®)

Z(D | M) = / L(D | O30 M) (00 | M) dps. ©)



Table 2. Prior distributions for the global 21-cm signal, regional foregrounds,
and instrumental noise parameters.

Parameter Prior Dist. Range Units
Statistical Noise
Noise Amplitude (0,)  Log-Uniform [1074,107"] K

Regional Foregrounds

Spectral Index (8;) Uniform [2.458, 3.146] -
Global 21-cm Signal

Amplitude (Az;) Uniform [0,0.25] K
Center Frequency (121) Uniform [50,200] MHz
Width (o1) Uniform [10, 20] MHz

2.3.1 Likelihood Function

In this work, we assume the noise & is adequately described by a ho-
moscedastic Gaussian distribution, however a host of more complex
noise structures (Scheutwinkel et al. 2022a) including radiometric
noise (Scheutwinkel et al. 2022b) have been previously explored
in the context of 21-cm signal recovery. Given a dataset sampled
across frequencies ¥ and times 7, the log-likelihood (In £) can thus
be expressed as:

_ 2
nf = 1 Z [ln(chr,f) . (Taara (Vie> 11) = M(vi, 11, 6)) (10)
2 k.l O'rzz

where M(vg,t;,0) = Teg (V. t1, k) + To1 (vi, 021) represents the
combined foreground and signal forward model. Additionally, to ac-
count for the fact that in practical contexts, the exact noise properties
are often not perfectly understood a priori, the Gaussian noise stan-
dard deviation, o, is treated as a free parameter during inference.

2.3.2 Prior Distributions

The prior distributions utilised throughout our primary analysis (Ta-
ble 2) were chosen to be sufficiently broad to encompass all physically
plausible realisations of the low-frequency sky, therefore the spec-
tral index priors were bounded by the extremes of the B(6, ¢, t)-map
derived in Equation 1. For the global 21-cm signal, the prior ranges
are informed by non-exotic astrophysical simulations (Cohen et al.
2017) from the semi-numerical code 21cmSPACE (Fialkov et al.
2013, 2014), reflecting the expected structure of signals.

2.3.3 Model Selection

Given the extreme sensitivity of global 21-cm signal recovery to
mismodelling, it is critical to quantitatively demonstrate that any ob-
servational dataset O used for a claimed detection most strongly sup-
ports a signal-plus-foreground model (M;) against a foreground-only
or alternative residual systematics model (M;). In order to perform
this robust model comparison, evaluating the Bayesian evidence is
essential as the relative probability of two competing models, i.e.,
M; and M, is determined by the ratio of their posterior odds, R;;.
By applying Bayes’ theorem at the model level and assuming a non-
informative (uniform) prior belief between them, 7(M;) = 7(M,),
this reduces to the ratio of their evidences, known as the Bayes Factor,
B; j-
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Table 3. Interpretive mapping between the log Bayes factor In(B;;) and
qualitative levels of support for model M; relative to M.

In(B;;) Odds in favour of M;  Preference for M;
0<In(B;) <1 1-3 Weak

1 <In(B;) <3 3-20 Moderate
3<In(B;;) <5 20-150 Strong

In(B;j) > 5 > 150 Decisive

_PMi|D) _ ZD M) m(M)
YU PM D) Z(DIM) a(Mp)
S—— —

B;j prior odds

QY

To interpret the quantitative strength of preference implied by the
Bayes factor B;; (or equivalently R;;), we adopt the qualitative clas-
sification scheme established by Kass & Raftery (1995), under which
the degree of support for a given comparative model is categorised
according to the ranges summarised in Table 3.

While gradient-based Markov Chain Monte Carlo (MCMC) meth-
ods, such as Hamiltonian Monte Carlo, excel at efficiently exploring
the posterior topology to identify parameter correlations (Duane et al.
1987; Neal 1996; Hoffman & Gelman 2014), they do not natively
provide a means to calculate the Bayesian evidence, Z. To address
this, we employ Nested Sampling (NS, Skilling 2006), which through
evaluating the high-dimensional integral shown in Equation 9 simul-
taneously yields posterior samples and an accurate estimate of the
evidence. However, as the dimensionality of the parameter space and
the volume of observational data increases traditional CPU-based
implementations of NS face significant scalability challenges. In this
work alone, the systematic exploration and validation of various
foreground partitioning schemes (see section 4) necessitates O (10°)
independent nested sampling runs. Given this, reducing the overall
inference cost, in terms of wall-time and computational resources is
essential for feasible and reproducible analysis. To this end, we inte-
grate the BlackJAX nested sampling framework (Yallup et al. 2025a;
Cabezas et al. 2024), described in subsection 2.4, into the analysis
pipeline.

2.4 GPU-Accelerated Nested Sampling

The parallel architecture of Graphics Processing Units (GPUs) en-
ables substantial acceleration of nested sampling through two com-
plementary mechanisms. The first is the hardware-level vectorisation
of likelihood evaluations, detailed in subsubsection 2.4.1, while the
second is an algorithmic reformulation of the nested sampling proce-
dure, outlined in subsubsection 2.4.2. The discussion below focuses
on an overview of the technical framework introduced by Yallup et al.
(2025a), while benchmarking of the resulting performance gains is
presented in section A. While not a primary focus of this work,
it is worth noting that implementing the analysis pipeline within a
JAX- and GPU-compatible framework enables automatic differenti-
ation (Baydin et al. 2017), allowing gradients of the forward model
and likelihood to be obtained at negligible additional computational
cost. This capability naturally supports future extensions incorporat-
ing gradient-informed nested sampling schemes (Betancourt 2011;
Lemos et al. 2024), as well as the integration of physically moti-
vated forward models within Bayesian machine learning pipelines
(see Saxena et al. 2024; Leeney et al. 2026).

MNRAS 000, 1-17 (2026)
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2.4.1 Likelihood Parallelisation

As outlined above, following appropriate pre-computation, such as
the construction of chromatic response tensors % (v, 1), the likeli-
hood reduces to a sequence of batched linear algebra operations. This
structure maps naturally onto GPUs, which are explicitly designed
to perform large-scale linear algebra workloads efficiently.

GPUs comprise thousands of lightweight cores optimised for high-
throughput, Single Instruction—Multiple Data (SIMD) workloads, in
contrast to CPUs, which prioritise low-latency, sequential perfor-
mance (Owens et al. 2008). When coupled with JAX’s Accelerated
Linear Algebra (XLA) compilation (Sabne 2020), they allow likeli-
hood evaluations to be executed concurrently across many threads,
yielding substantial reductions in wall-time. As a result, the effec-
tive scaling with increasing data volume or model dimensionality is
strongly suppressed, approaching O(1) behaviour, until limited by
memory bandwidth.

2.4.2 Algorithmic Parallelisation

The second level of acceleration involves an adaptation of the Nested
Sampling algorithm itself. Originally proposed by Skilling (2006),
NS solves the evidence integral by mapping the high-dimensional
parameter space © to a one-dimensional prior mass &, defined as
the fractional volume of the prior where the likelihood exceeds a
threshold L*:

£(L7) = / () d6. (12)
L(0)>L*

Under this transformation, the evidence is simply reduced to a one-
dimensional integral over prior mass. In conventional CPU imple-
mentations, this integral is evaluated numerically by evolving a pop-
ulation of ncpy live points, with each iteration contracting the re-
maining prior mass through replacement of the point with the lowest
likelihood. This process generates a discrete set of discarded (dead)
points which allow the integral to be approximated via a weighted
summation:

1
z- /0 L) d ~ Z(xi_l _X)L (13)

Here, £; is the likelihood of the i" discarded point, and the quadrature
weight (X;—; — X;) is determined by the stochastic contraction of the
prior volume. For a population of ncpy live points, the expected
log-volume remaining after k iterations is given by:

1 k
ncpu ncpu

k
E [log Xcpu] = = ) |
j=1

14)

Following Yallup et al. (2025a), this inherently sequential process can
be parallelised by simultaneously discarding the & lowest-likelihood
points and launching independent slice-sampling chains in parallel
across the GPU, each subject to the constraint £ > Lpin x, Where
Lomin,  1s the maximum likelihood of the discarded batch. Accounting
for the effective decrease in the number of live points throughout the
batch, the expectation of the cumulative log-volume contraction is
then:

k-1

E [log Xgpul = = )
i=0

1 —k
-~ 1n(”GPU ) (15)
nGpu —1 nGpPU

For further demonstrations of GPU-accelerated nested sampling ap-
plied to a broader range of cosmological and astrophysical inference
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problems, we refer the reader to Yallup et al. (2025b); Prathaban et al.
(2025); Leeney (2025); Leeney et al. (2025) and Lovick et al. (2025).

2.4.3 Sampler Hyperparameters

The performance of the sampling algorithm is governed by a
small number of key hyperparameters. These include the num-
ber of live points used throughout the run (n_live), influenc-
ing the resolution of the posterior and evidence estimation, the
number of slice-sampling steps used to generate new live points
(num_inner_steps), regulating the degree of correlation between
samples and finally, the number of live points replaced simulta-
neously during each iteration (num_delete) controlling the level
of algorithmic parallelism, trading computational efficiency against
sampling accuracy. Throughout this work, we adopt n_live = 100
X nDim, num_inner_steps = 12 X nDim, and num_delete = 0.2 X
n_live, where nDim denotes the number of free parameters in the
given model configuration. These choices are informed by conver-
gence and performance studies presented in section B.

3 REGION CONSTRUCTION

The accuracy with which the diffuse Galactic and extragalactic fore-
grounds can be approximated using the framework introduced in
subsection 2.2 is intrinsically linked to both the number of regions
adopted and the spatial logic used to define the corresponding masks.
If the partitioning is overly coarse, the assumption that extended
regions of the sky can be modelled with a single spectral index
or amplitude scale factor fails. Such under-parameterisation leaves
systematic residuals in the modelled antenna temperature that may
bias, or potentially mimic, the global 21-cm signal. Conversely,
over-parameterisation through excessive subdivision incurs a pro-
hibitive computational cost. Specifically, the number of required
likelihood evaluations within slice-sampling-based NS algorithms
(subsection 2.4) are highly sensitive to the dimensionality of the pa-
rameter space, in the worst case scaling as O(D?) (Handley et al.
2015), where D is the number of free parameters. Model compactness
is therefore a critical consideration for practical implementation, es-
pecially given that robust analyses typically require large ensembles
of inference runs for evidence-driven optimisation and validation.
This section first reviews the previously adopted sky-partitioning
scheme and discusses its limitations (subsection 3.1), before intro-
ducing the methodology developed in this work to address these
shortcomings (subsection 3.2 and subsubsection 3.3.1). A quantita-
tive comparison between the two approaches is presented in section 5.

3.1 Traditional Partitioning and the Occam Penalty

Typically, regional partitioning has relied on static, observation-
independent masks defined by dividing the spectral index map,
B(6, ¢,t) (Equation 1), into Ng uniform intervals of equal width
(hereafter referred to as linear splitting).

One of the primary advantages of the Bayesian evidence Z is
its intrinsic penalisation of additional model complexity that does
not substantially improve the fit, a manifestation of Occam’s razor
(MacKay 1992). However, in the linear splitting scheme, increasing
Npg to Ng + 1 does not simply add a new dimension to the existing
posterior, it redefines all region boundaries across the sky and hence
the entire parameter space.

Because the previous model configuration is not preserved as a
nested subset of the new one, there is no guarantee that the Ng+1 case
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Figure 4. Time-integrated importance maps in Galactic coordinates used
to construct sky regions. Each row corresponds to an observing window:
Galaxy Down (1hr), Galaxy Up (1hr) and a 4hr Galaxy integration, and each
column shows a different weighting: "horizon aware” (visibility-only), "sky
aware” (sky-brightness-weighted), and “beam aware” (beam-convolved sky-
brightness-weighted). The beam-aware maps concentrate weight where the
instrument is both sensitive and the sky is bright, producing observation-
dependent importance structures that motivate adaptive region definitions for
foreground parametrisation.

will recover or exceed the maximum likelihood, Lax, of its predeces-
sor. This inconsistency obscures the Occam’s penalty, as fluctuations
in evidence are driven simultaneously by changed spatial definitions
and increased model flexibility. Furthermore, the loss of a monotoni-
cally increasing Lax, a robust indicator of algorithmic convergence
as model complexity grows, removes a critical diagnostic for en-
suring sufficient exploration of the increasingly high-dimensional
likelihood surface.

Furthermore, because the sky brightness is spatially non-uniform
and modulated by the antenna beam, regions defined under this
method contribute unevenly to the observed antenna temperature
Tyaa(v). This lack of observational awareness leads to an inefficient
allocation of degrees of freedom: parameters associated with regions
of low beam-convolved sky brightness remain prior-dominated, in-
flating the dimensionality of the model space without significant
improvement to the suppression of foreground systematics below
that required for accurate signal recovery.

Tackling these limitations therefore requires addressing two pri-
mary challenges. First, considering the regional sky contributions to
the observed antenna temperature, and second, ensuring that succes-
sive refinements maintain a nested partitioning structure. We pro-
pose a two-stage methodology to achieve this: the definition of an
importance-weighted representation of the spectral index distribution
(subsection 3.2), followed by the application of recursive algorithms
to subdivide that distribution (subsection 3.3).

3.2 Spectral Index Importance Weighting

To better inform the construction of the foreground model for a
given observation, we introduce an importance weighting map,
W(8, ¢, v,t). This quantifies the fractional relevance of each spa-
tial coordinate to the total measured data, ensuring that the model’s
degrees of freedom are allocated where they are most justified.

In the following, we first outline a series of increasingly so-
phisticated weighting schemes, progressing from simple visibility
constraints to complex instrument-aware sensitivity. We then de-
scribe how these high-dimensional maps are compressed into a one-
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dimensional cumulative distribution, C(8’,1), which serves as the
foundation for defining region masks downstream.

3.2.1 Horizon-Aware Weighting

The most fundamental weighting scheme considers the visibility of
the sky overhead given the constraints introduced by the local envi-
ronment. By incorporating the static binary horizon mask H (6, ¢)
(for full details see Pattison et al. 2023), this scheme identifies the
subset of the spectral index distribution that is physically observable
to the antenna at any given time. It weights the importance of each
coordinate accordingly, ensuring the model is grounded by the ob-
servation’s field of view across its Local Sidereal Time (LST) range:

H(O, $)

—_— (16)
Jo, H (0", ¢") d

Whorizon (6, ¢) =

3.2.2 Sky-Brightness-Aware Weighting

The Horizon-Aware weighting can be further refined by incorporat-
ing the distribution of celestial power, Tsky(e, ¢, v,t) (as defined in
subsection 2.1). This scheme recognises that high-intensity regions,
such as the Galactic center, exert a disproportionate influence on the
total antenna temperature. By scaling the significance of each coor-
dinate relative to its brightness, the resulting distribution ensures that
the forward model’s spatial resolution is concentrated on the regions
that dominate the incident power:

Tsky(ga ¢’ v, l)q_{(e’ ¢)

. 17
Jon Ty (08" v, 0)H (67, ¢7) A an

Wsky (6, ¢, v, 1) =

3.2.3 Beam-Aware Weighting

While previous schemes assume uniform sensitivity across the visible
sky, the final refinement incorporates the antenna beam, D (8, ¢, v).
Through calculating the convolution of the beam pattern with sky
brightness across all LSTs, this weighting accounts for the spatial
and frequency-dependent sensitivity of the instrument. Consequently,
this provides the most accurate measure of the spatial foreground
contribution to the observational data:

Waeam (6, ¢,v,1) =
TSky(07 ¢’ Vs t)D(Q! ¢3 V)?"{(H, ¢) (18)
Jon Ty (67,6, v, 0)D (0", ¢/, V)H (60, ¢') dQ

3.2.4 The Importance-Weighted Distribution

To transform the spatial importance maps into a form suitable for
partitioning, they are compressed into a Cumulative Distribution
Function (CDF) over the spectral index values. This distribution rep-
resents the total importance mass, establishing a principled basis
for region definition where boundaries are informed by the relative
observational contribution of different spectral index ranges. By in-
tegrating the weighting W across the sky, frequency, and time, we
define C(B',1) as:

C(B,1) = / W0, ¢,v,0)1[B(0,¢,t) <B'] dQdvdr, (19)
t,v,4nr
where [ denotes the indicator function. The necessity of the increasing
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Figure 5. Spectral-index cumulative distribution functions (CDFs) constructed from different sky-weighting schemes. Each panel shows the empirical CDF
of the diffuse-foreground spectral index B from a given observing window: Galaxy Down (lhr), Galaxy Up (1hr) and a 4hr Galaxy integration. Comparing
an unweighted “linear” mapping (uniform in ) with horizon-, sky-, and beam-weighted CDFs constructed from the base spectral index map weighted by the

corresponding time-integrated pixel importances shown in Figure 4.

levels of physical consideration can be demonstrated by the variations
in the importance maps across the three observational windows, as
illustrated in Figure 4 and their associated CDFs, detailed in Figure 5.
We note that, while the CDFs constructed in this work are physically
motivated, the region-construction framework is not restricted to this
choice and may be generalised to alternative parametric forms, such
as a beta distribution, enabling more flexible optimisation of the
region definitions.

3.3 Algorithmic Partitioning Schemes

Given the importance-weighted CDF established in subsection 3.2,
discrete sky regions are constructed by partitioning the resulting one-
dimensional distribution optimally. We propose two distinct algo-
rithmic frameworks, Hierarchical Partitioning (subsubsection 3.3.1)
and Recursive Partitioning (subsubsection 3.3.2), differing in their
strategy of allocating parameters across the spectral index domain.
Crucially, both methodologies enforce a strictly nested model hier-
archy enabling better informed model selection.

3.3.1 Hierarchical Partitioning

The Hierarchical scheme (Algorithm 1) first establishes a base par-
tition of Npase = 2Llogy Nigual| regions, each containing an equivalent
fraction of the total importance mass (AC = 1/Npase). For config-
urations where Niota) > Npase, the algorithm resolves the remaining
degrees of freedom by targeting regions with the greatest width in
spectral index space, AS and subdividing them at their importance
midpoints.

3.3.2 Recursive Partitioning

The Recursive scheme (Algorithm 2) uses iterative refinement. Ini-
tialised with a single region spanning the full spectral index range
[ Bmin» Bmax ], the algorithm recursively identifies the region encap-
sulating the highest importance density (AC) and bisects it at its
midpoint in S-space.

3.3.3 Comparative Performance

While both algorithms seek to balance regions ‘importance’ and
spectral index variance, they differ in their order of prioritisation.

MNRAS 000, 1-17 (2026)

Algorithm 1 Hierarchical Partitioning
1: Input: Total regions Ny, weighted CDF C(3)
2: Step 1: Base Partition Construction
3: Niower «— 211082 (Niow1) ] > Largest power of 2 < Niotal
4: R « Partition C(B) into Njower €qual-mass regions
5: Step 2: Residual Resolution Enhancement
6
7
8

¢ Niem < Niotal — Niower
: while N, > 0 do
Target: Identify r* = [B,, Bp] € R with max width:
Aﬁr* =PBp — Pa
9: Split: Bisect r* at its importance midpoint:
Cm = 5(C(Ba) + C(Bp))
Bm = c! (Cm)
10: Update:R — (R\{r*}) U {[,Ba,ﬁm]s [,Bm,ﬁb]}
11: Nrem < Neem — 1
12: end while
13: Return: R

Algorithm 2 Recursive Partitioning

1: Input: Total regions Ny, weighted CDF C(B)
Step 1: Initialisation
R — {[Bmin, Bmax]} > Start with a single region
Step 2: Iterative Mass-Targeted Splitting
while |R| < Niota do
Measure: For each r € R, calculate m, = fr dc(p)
Target: Identify r* = [B4, Bp»] € R with max mass:
my+ = max({m, | r € R})
8: Split: Bisect r* at its physical midpoint:
Bm = %(,Ba + ﬁb)
9:  Update: R — (R\ {r"}) U{[Ba:Bml. [Bm: B}
10: end while
11: Return: R

A O ol

Hierarchical Partitioning first ensures that each region has uniform
importance mass and hence approximately equal contribution to the
observed data, as evidenced in Figure 7. Conversely, Recursive Par-
titioning prioritises addressing the assumption that a given region
can be defined by a single spectral index while balancing the require-
ment for higher parameter density where the foregrounds are most
dominant.

In practice, while both algorithms showed advantages over the lin-
ear splitting method, the Recursive Partitioning framework offered a
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Figure 6. Comparison of discrete sky splitting masks Mg, ; for Nig = 11 regions in Galactic coordinates. The columns compare an observation-independent
linear splitting baseline with observation-dependent ‘beam-weighted’ recursive splitting schemes for three observing windows: Galaxy Down (1 hr), Galaxy
Up (1 hr), and a 4-hr Galaxy integration. The adaptive scheme allows region boundaries to be redistributed to prioritise finer resolution in areas where the

beam-convolved sky-brightness is highest.
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Figure 7. A comparison of the chromatic response tensors and spectral in-
dex scaled antenna temperature for 8 regions defined using linear versus
beam-hierarchical sky splitting schemes. The columns show unique observ-
ing windows: Galaxy Down and Galaxy Up. Top row: chromaticity functions
K;(v) for each region, shown for an observation-independent linear split
(dashed) and an observation-dependent beam-hierarchical split (solid). Bot-
tom row: corresponding region contributions 7; (v) after applying assigned
spectral-index scaling. The range of magnitudes/ contributions across all re-
gions is demonstrated by the min/max shading for linear (light grey) and beam
hierarchical (dark grey).

faster optimisation of the parameter space compared to the hierarchi-
cal alternative thus providing a superior ability to suppress systematic
residuals while maintaining model compactness. Given this balance
of accuracy and computational speed, it is the focus of the results
presented hereafter. The impact of these observationally-dependent
schemes on the resultant foreground masks, Mpg ;, is illustrated in
Figure 6. It provides a comparison between the ‘Beam-Aware’ Re-
cursive scheme and the traditional linear baseline demonstrating the
redistribution of regions based on the Galactic orientation.

4 STATISTICAL VALIDATION

While evaluating the significance of a potential detection via the
Bayes factor is an essential step toward statistical rigor, the extreme
sensitivity of signal recovery to foreground mismodelling means
that, in isolation, it is insufficient to guarantee a physical detection.
Given the aim of this work is to optimise the parametrisation of
foreground models, it is essential to benchmark these refinements

against a robust Bayesian validation framework. To address this, we
adopt the methodology presented in Pattison et al. (2026, in prep),
which describes the integration of the BANTER validation framework
(Sims et al. 2025a) into physically motivated Global-21cm analysis
pipelines. In subsection 4.1, we discuss the specific failure modes
of pure evidence-based comparisons, before defining the two key
validation metrics used to identify and flag incorrect recoveries in
subsection 4.2.

4.1 Failure Modes and Model Degeneracy

Although the detection Bayes factor, Bge, assesses whether the in-
creased flexibility of a joint foreground-plus-signal model, Mpg421,
yields a better statistical fit than a foreground-only model, Mgg, it
represents a blind comparison and is agnostic to the physical ori-
gin of that improvement. Due to inherent model-level degeneracies
(Sims et al. 2025b) between the chromatic structure introduced by
diffuse foregrounds and the global 21-cm signal, this metric cannot
distinguish between cases where the signal recovery is reliable, or
whether the 21-cm signal model is compensating for inaccuracies
within the foreground model and hence the recovery is biased.

As an illustration of the range of possible inference outcomes, Fig-
ure 8 presents four representative cases of signal recovery in which
the inclusion of a 21-cm signal model is decisively favoured accord-
ing to the criteria in Table 3. Despite this strong statistical preference,
only one case yields an accurate recovery of the injected signal pa-
rameters. Throughout this work, we quantify the accuracy of signal
recovery using an uncertainty-aware metric defined in Equation 20,
hereafter referred to as the Z-score, and classify recoveries with
Z < 1 as accurate,

Ndim
1 (/ui - 91’ true)2
Z=— E _ 20
Naim &? 20

where y; is the posterior mean, 6; e is the true injected value, and
07 is the posterior standard deviation for each of the Ngy, signal
parameters.

4.2 Validation Checks

To guard against the failure modes described above, we employ a
two-stage validation strategy that jointly assesses signal-systematic
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Figure 8. Illustration of the validation framework applied to representative signal-recovery scenarios. Each column corresponds to a distinct inference outcome,
all of which exhibit a decisive statistical preference for the inclusion of a 21-cm signal model. Rows show (top to bottom) the recovered signal posterior for
signal-injected data, the corresponding posterior obtained from the null test (no signal injected), and the residuals of the overall best-fitting model. Shaded bands
indicate the posterior mean and 10 and 20 credible intervals. Blue and red curves denote configurations that pass or fail the respective validation criteria.
Boxed annotations report the detection Bayes factor log Bget, the signal-recovery Z-score, and the null-test evidence ratio In By, highlighting cases in which
statistically favoured detections nonetheless correspond to biased or unreliable signal recovery.

degeneracies through a null test (subsubsection 4.2.1) and evaluates
the overall statistical consistency of a given fit through analysing the
remaining residual structure (subsubsection 4.2.2).

4.2.1 Null Tests

The null test probes the susceptibility of a foreground model to spu-
rious signal detection. We apply this test for a given observational
period and parameterised foreground model by fitting the associated
joint model, Mgg,21, to a validation dataset Dy that is intention-
ally simulated without an injected 21-cm signal. The resulting fit is
then compared to a foreground-only model, Mg, via the null-test
evidence ratio:

ZV
1nBV:1n(¥), Q1)
FG
Lo and Zf; denote the Bayesian evidences of the respective

models. Due to the lack of signal within the validation data, any Bayes
ratio favoring the composite model indicates that the signal compo-
nent is compensating for residual foreground structure and therefore
identifies foreground models that are insufficiently expressive and
pose a high risk of biased detections when applied to observational
data. Any configuration with In By > 0 is thus flagged accordingly.

4.2.2 Residual Structure

While the null test identifies problematic model configurations prior
to their application to observational data, it does not assess whether
an individual fit leaves residuals that are statistically consistent with
instrumental noise. To do this, we compare the median a posteriori
likelihood of a given posterior distribution, £;, to the likelihood
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distribution expected if the data were described perfectly by the
model up to random noise fluctuations. This reference distribution,
denoted Lyise, is constructed by evaluating the likelihood using
multiple realisations of the assumed noise model, taken in this work
to be uncorrelated Gaussian noise with an amplitude of 25 mK.
The comparison is quantified by computing the fraction of the
Loise distribution that yields likelihood values less than or equal to

L

qi = IP(-[:noise < zz) . 22)

This represents the probability that a noise-only realisation produces
residuals that are at least as well fit as those obtained from the model.
Larger values of ¢; therefore indicate that the residuals are statisti-
cally indistinguishable from noise, while smaller values signal the
presence of coherent residual structure not captured by the model.
We classify a fit, and hence the corresponding model, as statistically
consistent if its median posterior likelihood lies within the upper
Gihreshold quantile of the ideal noise distribution, corresponding to
qi > qthreshold- Throughout this work we adopt greshoid = 0.99.
Fits failing this criterion are flagged as containing residual sys-
tematic structure, indicative of foreground mismodelling or sig-
nal-systematic degeneracy.

The requirement for both validation metrics to be applied in paral-
lel is illustrated in Figure 8. While all cases shown strongly support
the inclusion of a signal model (with In Bgey > 0), validation in-
dicates that only Case 4 satisfies both criteria and can therefore be
robustly trusted, corresponding to the sole accurate signal recovery.
In particular, Case 2 demonstrates a scenario in which bias in the
recovered 21-cm signal is sufficient to suppress foreground residuals
such that they appear noise-like however this failure mode is still
successfully identified by the null test. Conversely, Case 3 illustrates
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Figure 9. Bayesian evidence, log Z (top row) and maximum log-likelihood, log Lmnax (bottom row) given by nested sampling versus the number of modeled
foreground regions. Columns show Galaxy Down (1 hr), Galaxy Up (1 hr), and a 4-hr Galaxy integration, while each panel compares the four splitting strategies:

linear, horizon-nested, sky-nested, and beam-nested.

a situation in which the null test is passed, yet residual systematics
remain insufficiently Gaussian (¢ < gnreshold)> rendering the inferred
signal recovery unreliable.

5 RESULTS

In this section, we present the comparative results of a suite of
nested-sampling fits across all three observational windows, ex-
plicitly benchmarking all importance-weighted partitioning schemes
against the original observation-independent linear splitting. In re-
sponse to the limitations of prior region definitions discussed in
section 3, this section is structured as follows. In subsection 5.1, we
examine how nested configurations improve Bayesian model com-
parison. We then demonstrate the degree to which the introduction
of importance-aware region definitions better constrain foreground
parameters in subsection 5.2. Finally, in subsection 5.3, we assess
whether these improvements propagate to enhanced suppression of
chromatic systematics, resulting in more reliable signal recovery.

5.1 Observing the Occam Penalty

As discussed in subsection 3.1, traditional linear splitting schemes
do not define a consistent model hierarchy, as the reshuffling of
region boundaries with increasing Ny, redefines the parameter space
rather than expanding it. Figure 9 illustrates the consequences of this
behaviour for both the maximum log-likelihood, log L,x, and the
Bayesian evidence, log Z, alongside the comparative advantages of
the nested schemes introduced in this work.

First, the evolution of log Lax under the linear splitting scheme is
highly non-monotonic, demonstrating that in the absence of a nested
construction, increasing model dimensionality does not guarantee an
improved description of the data. In particular, successive increases
in Nyeg within the linear scheme can introduce region definitions that
are less optimal than those of lower-dimensional models. In contrast,
all nested schemes exhibit a monotonic increase in log Lmax, up
to small fluctuations attributable to algorithmic convergence. This

behaviour guarantees that the introduction of additional parameters
can only maintain or improve the quality of the fit.

Second, when considering the global maximum likelihood attained
across the full range of region counts explored (Nrg = 6-16), the
physically motivated sky- and beam-weighted schemes consistently
outperform the linear baseline. This demonstrates that concentrat-
ing model flexibility in observationally significant regions of the sky
yields foreground models that are more representative of the under-
lying structure. Moreover, these improvements are achieved more
efficiently, supporting the Recursive partitioning strategy introduced
in subsection 3.3. In particular, the importance-aware schemes reach
a plateau in log L, at substantially lower values of Npg than the
linear scheme requires to attain a comparable quality of fit.

This effect is most pronounced in the Galaxy Down observing
window, where the likelihood saturates at Ny, ~ 8-9, while the
linear scheme requires 14 or 16 regions to reach a similar level of
performance. Although this trend is present across all observational
windows, it is least pronounced for the Galaxy Up case, consistent
with the strong Galactic emission and short integration times that
necessitate higher model dimensionality for adequate resolution.

Finally, the nested constructions enable a much clearer identifica-
tion of the Occam penalty through the Bayesian evidence. Because
log Z balances improvements in fit quality against the expansion of
the prior volume, the saturation of log £,ax in the Galaxy Down case
is accompanied by a monotonic decline in log Z beyond N = 8-9.
Under the linear splitting scheme, by contrast, the evidence exhibits
no coherent trend, severely limiting its utility for principled model
selection. While the evidence peak is less sharply defined for the
Galaxy Up window, reflecting continued competition between im-
proving fit quality and increasing prior volume, the nested schemes
nonetheless exhibit the expected behaviour once their respective like-
lihood maxima are reached.

It is important to note, however, that the maximisation of the
Bayesian evidence alone does not guarantee sufficient foreground
recovery for robust 21-cm signal inference. As discussed previously,
even small residuals bias the recovered global 21-cm signal, well
below the scale at which they significantly impact log Z, motivating
the validation framework introduced in section 4.
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Figure 10. Comparison of foreground spectral index recovery using linear vs. beam-nested sky parameterisation schemes (Nyeg = 12). Columns represent
different observing windows (Galaxy Down, Galaxy Up, and a 4 hr Integration), while rows compare the linear splitting method (top) with the beam-nested
splitting method (bottom). In each panel, the shaded bands indicate the ground-truth range of spectral indices () present within that specific region on the
high-resolution (Ngjge = 512) base map used for data generation. The overlaid points and 1 o~ error bars show recovered posterior means for the four generation/fit
combinations (Signal Injected/Signal Fit, Signal Injected/No-signal Fit, No-signal Injected/Signal Fit, No-signal Injected/No-signal Fit).

5.2 Foreground Recovery

Beyond the requirements of 21-cm signal extraction, the ability to
update our prior state of knowledge regarding low-frequency radio
maps and extrapolate them across a continuous frequency band is a
valuable result in its own right. Figure 10 benchmarks the posterior
spectral index recovery against the ‘ground truth’ ranges present in
the full-resolution (Nsige=512) base map used in simulations for both
the traditional linear splitting and the beam-nested scheme (Nyeg=12)-

This comparison provides a clear visualisation of the dynamic
range, AB, captured by each mask under varying observational con-
ditions. In the Galaxy Up case, for instance, the adaptive masks
naturally cluster around lower spectral index values, correctly pri-
oritising the flatter-spectrum emission characteristic of the Galactic
plane. Critically, we find that the recovery of the spectral index val-
ues is far more robust under the new scheme. The original linear
splitting exhibits two primary shortfalls: regions associated with low
beam-convolved brightness remain prior-dominated (indicated by
large uncertainties and poor centering), while others are recovered
with high confidence but significant bias. The Galaxy Up case being
particularly inaccurate example. In contrast, the beam-nested scheme
consistently centres the posterior means within the true physical range
across all regions.

Furthermore, we demonstrate the robustness of this foreground
recovery across various permutations of signal injection and model
fitting. As expected, the recovered foreground parameters remain
largely independent of the underlying 21-cm cosmology, as the sig-
nal’s amplitude is orders of magnitude below the chromatic distor-
tions. The only marginal exception is the 4-hr Galaxy integration,
where the longer integration period reduces the effects of beam-sky
coupling such that the presence of a 21-cm signal without modeling
leads to very slight offsets in the recovered spectral indices (see Sig-
nal Injected/ No Signal Fit). While Figure 10 focuses on the 12-region
case, these performance gains are consistent across all investigated
values of Nieg.

MNRAS 000, 1-17 (2026)

5.3 Signal Recovery

Finally, we address the primary objective of this work, the capacity
of the proposed modelling frameworks to pass the validation met-
rics and accurately recover the underlying 21-cm signal. Figure 11
summarises the results of the complete suite of nested sampling
runs, with each cell reporting the detection Bayes factor (In Bget),
the null-test evidence ratio (In By ), and the overall signal recovery
accuracy (Z-score). Each entry thus encompasses the outcome of
four independent inference runs.

As a preliminary observation, these results support the robust
success of the validation framework. In all investigated cases, the
framework successfully identifies and flags inaccurate signal recov-
eries, a feature that is particularly relevant in scenarios exhibiting
high Bayes factors that favor a detection. Here, the framework ex-
poses the potential pitfalls of relying on In Bge in isolation, where
decisive statistical support might otherwise lead to the acceptance of
a biased parameter estimate.

In analysing the signal recovery, we examine the three obser-
vational windows independently. For the Galaxy Down case, the
importance-weighted schemes enable accurate, validated signal re-
covery (Z < 1) using just 8 regions (for Sky and Horizon-Nested) or
9 regions (for Beam-Nested). In contrast, the original observation-
independent linear splitting requires 14 regions to reach a validated
recovery. A similar trend is observed for the 4-hour Galaxy inte-
gration, however, as this is intrinsically a less complex observation
for signal detection, the required region counts are lower across
all methodologies. While all importance-aware dynamic schemes
achieve validated recovery with 7 regions, the linear splitting scheme
requires 8.

The Galaxy Up case, included throughout this work as a high-
stress test, presents more nuanced behavior. Interestingly, the linear
splitting scheme shows marginal improvements in recovery at cer-
tain dimensionalities compared to the importance-weighted models,
despite the latter’s superior foreground parameter constraints dis-
cussed in subsection 5.2. Upon investigation, we find that while the



Linear

Beam
Nested

Sky
Nested

Galaxy Down

Horizon
Nested

GPU-Accelerated Foreground Optimisation 13

Linear

Beam
Nested

Sky
Nested

Galaxy 4hr

Horizon
Nested

Linear

Beam
Nested

Sky
Nested

Galaxy Up

Horizon
Nested

11

X

X

12

No. Regions

X

32.05 64.10

109 Bet

=0.00

Validation Test
Failed

=4.0

2.0
Signal Recovery Z Score

0.0

Figure 11. Summary of signal recovery and Bayesian model selection across sky-splitting methods and region counts. Each panel corresponds to a unique
observing window, with columns indicating the number of regions (Nre; = 6-16) and rows showing the different sky-splitting schemes. The outer shaded
square encodes the Bayesian evidence in favour of a signal detection, quantified by the log Bayes factor log Bge, with lighter colours indicating stronger support
for the signal model. The inner square displays the statistical consistency of the recovered posterior with the injected signal via the Z-score, shown using a
green—to—red colormap. Validation failures are indicated by a single blue cross, drawn when either the null test (signal preferred in no-signal injections) or the
residual consistency test fails, signalling potential residual systematics degenerate with the global 21-cm signal.

signal recovery Z-scores are accurate, the flagging of the importance-
weighted nested models is driven by the null test (In 8y > 0) rather
than the residual structure test. This level of signal-foreground de-
generacy is a fundamental challenge that cannot be easily predicted
a priori or accounted for within the physically motivated CDF con-
struction and subsequent splitting scheme.

However, an intriguing avenue for future work would be to use
the null-test Bayes factor itself as an optimisation criterion for re-
gion definition. Such an approach would require a parameterised,
but not explicitly information-aware, CDF construction. Given ex-

ploring O(10?) alternative CDF configurations would be computa-
tionally prohibitive even with the GPU-accelerated nested-sampling
pipeline presented in this work, such an approach would likely require
simulation-based methodologies capable of providing rapid Bayesian
model comparison forecasts. Recent developments in evidence net-
works (Jeffrey & Wandelt 2024; Gessey-Jones & Handley 2024) and
conditional Bayesian Neural Ratio Estimation (cBNRE; Leeney et al.
2026) offer a promising route toward enabling such evidence-driven
model optimisation. A detailed investigation of these approaches is
left to future work.

MNRAS 000, 1-17 (2026)
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6 CONCLUSIONS

In this work, we have presented a significant advancement in the com-
putational and methodological framework for physically-motivated
global 21-cm signal analysis. By leveraging GPU architectures to-
gether with modern compiler-based optimisation, we achieved a sub-
stantial acceleration of Nested Sampling Inference, reducing compu-
tational wall-time by factors of O(10?~10%). This computational ef-
ficiency enabled the development and rigorous validation of a novel,
observation-dependent sky-partitioning scheme designed to address
the challenges of chromatic beam distortions and Galactic foreground
contamination. Our results demonstrate that this dynamic partition-
ing improves foreground modelling through three primary avenues:

e Principled Model Selection: The enforcement of a strictly
nested region hierarchy allows for the clear identification of the sat-
uration of the maximum log-likelihood, In £,x and consequently
the Occam penalty within the Bayesian evidence, In Z. This facili-
tates a statistically robust optimisation of model complexity, ensur-
ing that the number of foreground regions is sufficient to accurately
reconstruct the sky to the required precision without unnecessary
over-parameterisation.

o Improved Foreground Reconstruction: The scheme yields
more accurate recovery of spatially varying spectral indices. The
resulting posterior distributions are consistently centred within true
physical ranges, even in challenging observing windows such as
when there is maximal coupling between the chromatic beam and
high-intensity emission from the Galactic plane.

o Efficient Signal Recovery: Complex Galactic foregrounds can
now be modelled at the precision required for robust global 21-
cm signal recovery using a significantly smaller parameter set. This
reduction in dimensionality, combined with our GPU-accelerated
pipeline, makes high-fidelity Bayesian inference far less computa-
tionally expensive for large-scale experimental datasets.

While this study focused on spectral index masks within the
REACH framework, the underlying algorithm is modular and adapt-
able. It can be readily applied to amplitude-based scale factor maps
and is flexible enough to accommodate the diverse beam patterns and
instrument responses of different global 21-cm experiments. Future
work will explore the integration of this differentiable pipeline into
advanced Bayesian and machine learning frameworks, providing a
scalable path toward a confirmed detection of the 21-cm signal from
the Cosmic Dawn and the Epoch of Reionisation.
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APPENDIX A: ACCELERATION BENCHMARKING

In subsection 2.4, we described how nested sampling can be accel-
erated using modern GPU hardware through parallelisation at two
distinct levels: within the likelihood evaluation and through algorith-
mic reformulation. This section benchmarks the performance gains
associated with each stage by comparing the GPU-accelerated im-
plementations with traditional CPU-based approaches, focusing on
reductions in wall-clock time and overall financial cost.

A1l Likelihood Acceleration

We first evaluate the execution time of the likelihood function on both
CPU and GPU architectures, examining how performance scales with
the dimensionality of the parameter space (controlled by the number
of regions) and with data volume. When investigating the former,
to isolate the independent contributions of speed-up from compiler
optimisation and hardware parallelism, we initially benchmark the
effect of just-in-time (JIT) compilation on CPU execution, before
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Figure Al. Performance benchmarking of the likelihood evaluation across
varying model complexities. Top: Comparison of mean execution time (ms)
for 1000 likelihood calls on an Intel Cascade Lake CPU (with and without JIT
compilation) versus an NVIDIA A100 GPU. Bottom: The resulting speed-up
factor of the A100 implementation relative to both JIT and non-JIT CPU
baselines.

showing the maximal effect on an NVIDIA A100 GPU. The two dis-
tinct stages of computational efficiency are evident from the resulting
performance trends shown in Figure Al.

JIT compilation alone yields an improvement of approximately
two orders of magnitude in the constant computational overhead of
the likelihood evaluation. Furthermore, while both the compiled and
uncompiled CPU implementations scale approximately linearly with
model dimensionality, O(N), JIT compilation significantly reduces
the magnitude of this scaling, from an increase of 0.023 ms per ad-
ditional region in the uncompiled case to 0.017 ms per region for
the compiled. This demonstrates that compiler optimisation substan-
tially accelerates the sequential CPU execution, both by reducing
fixed overheads and by improving scaling behaviour.

Moving beyond CPU execution, the GPU implementation exhibits
effectively constant run-time with model dimensionality, O(1), indi-
cating near-perfect parallelisation of the likelihood evaluation with
increasing parameters. Although this behaviour will ultimately be
limited by available device memory, these results demonstrate that
even for models with substantially inflated region counts, well be-
yond those required for realistic analyses, the memory capacity of a
modern accelerator such as the NVIDIA A100 is sufficient.

For scaling with data volume, the effect of JIT execution is not
shown explicitly at the data scales investigated (up to 2000 spectra,
representative of a typical six-month REACH telescope observing
window) as the computational overhead of non-compiled CPU exe-
cution renders such benchmarking infeasible. It is important to note,
however, that this represents how joint, time-resolved fits at these
scales was entirely impractical within the traditional CPU-based
pipeline and therefore the current framework is essential for pro-
cessing the full volume of observational data. We therefore focus on
the comparative scaling behavior of the JIT-compiled CPU and GPU
implementations using a constant 10-region model, as shown in Fig-
ure A2. Once again we show that the sequential processing nature of
CPUs leads to increased runtime with data volume in comparison to
O(1) scaling on a GPU.

One noticeable trend in the GPU runtime is a discontinuity at 108
time samples, resulting in a = 20 % reduction in runtime. We attribute
this to the hardware specifications of the NVIDIA A100 (80GB),

MNRAS 000, 1-17 (2026)

® GPUJIT (x10)
CPU JIT (+10)
GPU mean
1 00 4 (discontinuity at N=108)

Likelihood
Call Time (ms)

1014

Speed-up
Factor

10! 102 103
No. Time Samples

Figure A2. Performance benchmarking of the likelihood evaluation across
varying data volumes. Top: Comparison of mean execution time (ms) for
1000 likelihood calls on an Intel Cascade Lake CPU (with JIT compilation)
versus an NVIDIA A100 GPU, with discontinuity highlighted in by red line
(dashed/solid). Bottom: The resulting speed-up factor of the A100 implemen-
tation relative to the JIT CPU baselines.

which features 108 Streaming Multiprocessors (SMs). Therefore as
the operations achieve sufficient occupancy to allow for Tensor Core
acceleration, a transition in the underlying execution strategy oc-
curs, moving the workload from standard Single Instruction, Multiple
Thread (SIMT) execution on the FP64 CUDA cores (9.7 TFLOPS)
to the more efficient Single Instruction, Multiple Data (SIMD) style
processing of the FP64 Tensor Cores (19.5 TFLOPS) (NVIDIA Cor-
poration 2020).

A2 Nested Sampling Acceleration

Finally, we benchmark the total execution time of the BlackJAX
algorithm employed in this work against a traditional CPU-based
Nested Sampler, taken in this work to be PolyChord (Handley et al.
2015). This comparison evaluates the end-to-end performance of
the inference pipeline, encompassing both the sampler’s algorith-
mic efficiency and the accelerated likelihood evaluations. For fair
comparison, we perform these runs with consistent algorithmic con-
figurations to match the defaults of PolyChord: n_live =25 X nDim
and num_inner_steps =5 X nDim (see section B for more details).

APPENDIX B: ALGORITHMIC CONVERGENCE

The hyperparameters for the GPU-accelerated Nested Sampling runs
presented in subsubsection 2.4.3 were selected to balance computa-
tional efficiency with algorithmic precision. While the high compu-
tational cost of traditional CPU-based Nested Sampling often ne-
cessitates approximate hyperparameter choices, the new accelerated
framework allows for a systematic exploration of convergence.

To establish a robust parameter configuration, we performed a con-
vergence study on a 23-parameter model (19 linearly split regions)
using the Galaxy Up observational data. This configuration was cho-
sen as an extreme test case, as its dimensionality exceeds that of the
primary analysis. As shown in Figure B1, while the consistency of
the Bayesian evidence (In Z) is influenced by both the density of
live points (n_live) and the number of inner slice-sampling steps
(num_inner_steps), the latter exhibits a significantly greater ef-
fect. This indicates that the primary driver of stability for this case
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Configuration  No. Regions =~ GPU Runtime (s)  CPU Runtime (s)  Speed-up Factor  Price Factor
Integrated 10 25.48 — — _
Integrated 20 39.68 — — —
Integrated 30 72.71 — — _
Resolved 10 39.04 — — _
Resolved 20 123.19 — — —
Resolved 30 315.13 — — _

Table A1. Comparison of runtime and cost efficiency between BlackJAX executed on an NVIDIA A100 GPU and PolyChord executed on a 40-core Intel Ice
Lake CPU. Runtimes are evaluated for a fixed six-hour observation window corresponding to 72 observations. The speed-up factor is defined as tcpy/fGpu,
while the price factor denotes the relative financial cost per run based on hardware pricing on the Cambridge Service for Data Driven Discovery (CSD3) HPC
system, assuming costs of 0.01 p per CPU core-hour and 100 p per A100 GPU-hour.
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Figure B1. Consistency of Bayesian evidence estimates from BlackJAX
nested sampling for the Galaxy-Up 1-hour integration with 19 linearly split
regions. The top panel shows the spread of recovered In Z across repeats,
and the bottom panel shows 7,4 7, both as functions of the number of live
points (per Npjp,). Colours indicate the number of inner slice-sampling steps
(3, 6, or 9X Npjp). All runs use a num_delete of 0.2 X Npjp-

is the effective decorrelation of samples and thorough exploration of
the prior volume. Consequently, all results in this work use an even
more conservative value of num_inner_steps = 12 X nDim to en-
sure reliable and repeatable evidence estimation across all observing
windows.

Furthermore, the efficiency of this framework enables all future
analyses performed on true observational data to apply the same boot-
strapping procedures to verify that convergence is universal across
the entire dataset and all model configurations.

This paper has been typeset from a TEX/I&TEX file prepared by the author.
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